scispace - formally typeset
Search or ask a question
Topic

Thin-film transistor

About: Thin-film transistor is a research topic. Over the lifetime, 48425 publications have been published within this topic receiving 680879 citations. The topic is also known as: TFT.


Papers
More filters
Journal ArticleDOI
Ping Liu1, Yiliang Wu2, Yuning Li2, Beng S. Ong2, Shiping Zhu2 
TL;DR: This gate dielectric design, coupled with compatible solution- Processable semiconductor and conductor materials, has enabled fabrication of all solution-processed, high-performance organic thin-film transistors on flexible substrates.
Abstract: A novel solution-processed, compositionally and structurally stable dual-layer gate dielectric composed of a UV-cured poly(4-vinyl phenol)-co-poly(methyl methacrylate) bottom layer and a thermally cross-linked poly(methyl silsesquioxane) top layer for organic thin-film transistors is described. This gate dielectric design, coupled with compatible solution-processable semiconductor and conductor materials, has enabled fabrication of all solution-processed, high-performance organic thin-film transistors on flexible substrates. High field-effect mobility and current on/off ratio, together with other desirable transistor properties, are demonstrated.

126 citations

Patent
06 Jun 1997
TL;DR: In this article, a method of forming high definition patterned organic layers in a full-color electroluminescent (EL) display array on a two-dimensional thin film transistor (TFT) array substrate is described.
Abstract: A method of forming high definition patterned organic layers in a full-color electroluminescent (EL) display array on a two-dimensional thin film transistor (TFT) array substrate is described. The substrate has subpixels with each subpixel having raised surface portions and one recessed surface portion which reveals a bottom electrode. Red, green, and blue color forming organic EL layers are formed in the designated subpixels in accordance with a selected color pattern. The method uses a donor support which is coated with a transferable coating of an organic EL material. The donor support is heated to cause the transfer of the organic EL material onto the designated recessed surface portions of the substrate forming the colored EL medium in the designated subpixels. Optical masks and, alternatively, an aperture mask are used to selectively vapor deposit respective red, green, and blue organic EL media into the designated color EL subpixels.

126 citations

Journal ArticleDOI
TL;DR: This communication demonstrates a method of transferring unreacted low molecular weight siloxane oligomers from freshly prepared "dry" PDMS stamps for patterning organic semiconductors and conducting polymers into functional devices via selective wetting.
Abstract: This communication demonstrates a method of transferring unreacted low molecular weight (LMW) siloxane oligomers from freshly prepared “dry” PDMS stamps for patterning organic semiconductors and conducting polymers into functional devices via selective wetting. The semiconductors were patterned onto the modified surfaces via dip-coating with well-resolved feature sizes as small as 1 μm. Functional transistor arrays exhibited field-effect mobilities as high as 0.07 cm2/Vs. The proposed printing method eliminates the need to ink SAMs for fabricating patterns and results in a simple, fast, and highly reproducible method of patterning organic semiconductors from solution. The method herein also produced a flexible transistor composed of patterned PEDOT source−drain electrodes.

126 citations

Journal ArticleDOI
TL;DR: In this paper, high temperature annealing has been utilized to enhance the polysilicon grain and improve the quality of silicon crystal after low temperature MILC treatment on amorphous silicon.
Abstract: High performance super TFTs with different channel widths and lengths, formed by a novel grain enhancement method, are reported. High temperature annealing has been utilized to enhance the polysilicon grain and improve the quality of silicon crystal after low temperature MILC treatment on amorphous silicon. With device scaling, it is possible to fabricate the entire transistor on a single grain, thus giving the performance of single crystal SOI MOSFET. The effects of grain boundaries on device performance have been studied, indicating the existence of extra leakage current paths caused by the grain boundaries traversing the channel, which induced subthreshold hump and early punchthrough of wide devices. The probability for the channel region of a TFT to cover multiple grains decreases significantly when the device is scaled down, resulting in better device performance and higher uniformity.

125 citations

Patent
Huaxiang Yin1, Takashi Noguchi1, Hyuk Lim1, Wenxu Xianyu1, Hans S. Cho1 
16 Nov 2010
TL;DR: In this paper, a thin-film transistor comprises an Si-based channel having a nonlinear electron-moving path, a source and a drain disposed at both sides of the channel, a gate disposed above the channel and an insulator interposed between the channel between the source and the gate, and a substrate supporting the channel.
Abstract: A thin film transistor comprises an Si-based channel having a nonlinear electron-moving path, a source and a drain disposed at both sides of the channel, a gate disposed above the channel, an insulator interposed between the channel and the gate, and a substrate supporting the channel and the source and the drain disposed at either side of the channel respectively.

125 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Band gap
86.8K papers, 2.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023341
2022918
2021640
20201,333
20192,015
20182,080