scispace - formally typeset
Search or ask a question
Topic

Thin-film transistor

About: Thin-film transistor is a research topic. Over the lifetime, 48425 publications have been published within this topic receiving 680879 citations. The topic is also known as: TFT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported that tin monoxide (SnO) has a high hole mobility and produces good p-type oxide thin-film transistors (TFTs).
Abstract: This paper reports that among known p-type oxide semiconductors, tin monoxide (SnO) has a high hole mobility and produces good p-type oxide thin-film transistors (TFTs) Device-quality SnO films were grown epitaxially on (001) yttria-stabilized zirconia substrates at 575°C by pulsed laser deposition These exhibited a Hall mobility of 24cm2V−1s−1 at room temperature Top-gated TFTs, using epitaxial SnO channels, exhibited field-effect mobilities of 13cm2V−1s−1, on/off current ratios of ∼102, and threshold voltages of 48V

612 citations

Journal ArticleDOI
TL;DR: The syntheses and comprehensive characterization of 14 organic semiconductors based on perylene bisimide (PBI) dyes that are equipped with up to four halogen substituent in the bay area of the perylene core and five different highly fluorinated imide substituents are described, making them suitable for a wide range of practical applications.
Abstract: The syntheses and comprehensive characterization of 14 organic semiconductors based on perylene bisimide (PBI) dyes that are equipped with up to four halogen substituents in the bay area of the perylene core and five different highly fluorinated imide substituents are described. The influence of the substituents on the LUMO level and the solid state packing of PBIs was examined by cyclic voltammetry and single crystal structure analyses of seven PBI derivatives, respectively. Top-contact/bottom-gate organic thin film transistor (OTFT) devices were constructed by vacuum deposition of these PBIs on SiO2 gate dielectrics that had been pretreated with n-octadecyl triethoxysilane in vapor phase (OTS-V) or solution phase (OTS-S). The electrical characterization of all devices was accomplished in a nitrogen atmosphere as well as in air, and the structural features of thin films were explored by grazing incidence X-ray diffraction (GIXD) and atomic force microscopy (AFM). Several of those PBIs that bear only hydr...

609 citations

Journal ArticleDOI
TL;DR: In this article, a single-walled nanotube transistor is used to construct a nonvolatile charge-storage memory element operating at room temperature, which can be reversibly written, read, and erased at temperatures up to 100 K.
Abstract: A high-mobility (9000 cm2/V·s) semiconducting single-walled nanotube transistor is used to construct a nonvolatile charge-storage memory element operating at room temperature. Charges are stored by application of a few volts across the silicon dioxide dielectric between nanotube and silicon substrate, and detected by threshold shift of the nanotube field-effect transistor. The high mobility of the nanotube transistor allows the observation of discrete configurations of charge corresponding to rearrangement of a single or few electrons. These states may be reversibly written, read, and erased at temperatures up to 100 K.

605 citations

Patent
23 Dec 2005
TL;DR: In this paper, a liquid crystal display device is described, which reduces the number of masks and improves an aperture ratio, and a method for fabricating the same is presented. But it is not shown how to construct such a display.
Abstract: Disclosed are a liquid crystal display device which reduces the number of masks and improves an aperture ratio, and a method for fabricating the same. The liquid crystal display device includes gate and data lines perpendicularly intersecting on a substrate having pixel and pad parts; a thin film transistor on the substrate at the intersection of the gate and data lines; a pixel electrode on the substrate at the pixel part and connected directly to a drain electrode of the thin film transistor; an insulating film on the overall surface of the substrate including the pixel electrode and the thin film transistor; an organic film on the insulating film over the thin film transistor and the data line; and a common electrode of slit shapes overlapping the pixel electrode such that the insulating film is interposed between the common electrode and the pixel electrode.

601 citations

Journal ArticleDOI
TL;DR: In this paper, self-assembled monolayers and multilayers (SAMs) of organic molecules have been used to achieve low gate leakage currents and good chemical/thermal stability.
Abstract: Principal goals in organic thin-film transistor (OTFT) gate dielectric research include achieving: (i) low gate leakage currents and good chemical/thermal stability, (ii) minimized interface trap state densities to maximize charge transport efficiency, (iii) compatibility with both p- and n- channel organic semiconductors, (iv) enhanced capacitance to lower OTFT operating voltages, and (v) efficient fabrication via solution-phase processing methods. In this Review, we focus on a prominent class of alternative gate dielectric materials: self-assembled monolayers (SAMs) and multilayers (SAMTs) of organic molecules having good insulating properties and large capacitance values, requisite properties for addressing these challenges. We first describe the formation and properties of SAMs on various surfaces (metals and oxides), followed by a discussion of fundamental factors governing charge transport through SAMs. The last section focuses on the roles that SAMs and SAMTs play in OTFTs, such as surface treatments, gate dielectrics, and finally as the semiconductor layer in ultra-thin OTFTs.

595 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Band gap
86.8K papers, 2.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023341
2022918
2021640
20201,333
20192,015
20182,080