scispace - formally typeset
Search or ask a question
Topic

Thin-film transistor

About: Thin-film transistor is a research topic. Over the lifetime, 48425 publications have been published within this topic receiving 680879 citations. The topic is also known as: TFT.


Papers
More filters
Journal ArticleDOI
TL;DR: The experimental results demonstrated that a well-known n-channel semiconductor, [6,6]-phenyl C(61) butyric acid methyl ester, can be effectively doped with N-DMBI by solution processing; the film conductivity is significantly increased by n-type doping.
Abstract: We present here the development of a new solution-processable n-type dopant, N-DMBI. Our experimental results demonstrated that a well-known n-channel semiconductor, [6,6]-phenyl C(61) butyric acid methyl ester (PCBM), can be effectively doped with N-DMBI by solution processing; the film conductivity is significantly increased by n-type doping. We utilized this n-type doping for the first time to improve the air-stability of n-channel organic thin-film transistors, in which the doping can compensate for the electron traps. Our successful demonstration of n-type doping using N-DMBI opens up new opportunities for the development of air-stable n-channel semiconductors. It is also potentially useful for application on solution-processed organic light-emitting diodes and organic photovoltaics.

332 citations

Journal ArticleDOI
TL;DR: In this paper, a novel ultrathin elevated channel thin-film transistor (UT-ECTFT) made using low-temperature poly-Si was proposed, which exhibits excellent current saturation characteristics even at high bias.
Abstract: A novel ultrathin elevated channel thin-film transistor (UT-ECTFT) made using low-temperature poly-Si is proposed. The structure has an ultrathin channel region (300 /spl Aring/) and a thick drain/source region. The thin channel is connected to the heavily doped drain/source through a lightly doped overlapped region. The lightly doped overlapped region provides an effective way to spread out the electric field at the drain, thereby reducing significantly the lateral electric field there at high drain bias. Thus, the UT-ECTFT exhibits excellent current saturation characteristics even at high bias (V/sub ds/=30 V, V/sub gs/=20 V). Moreover, the UT-ECTFT has more than two times increase in on-state current and 3.5 times reduction in off-state current compared to conventional thick channel TFT's.

332 citations

Patent
13 Jan 2009
TL;DR: In this paper, a thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device has been presented.
Abstract: A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.

329 citations

Journal ArticleDOI
TL;DR: To the best of the knowledge, this is the first report of all 2D transparent TFT fabricated on flexible substrate along with the highest mobility and current ON-OFF ratio.
Abstract: In this article, we report only 10 atomic layer thick, high mobility, transparent thin film transistors (TFTs) with ambipolar device characteristics fabricated on both a conventional silicon platform as well as on a flexible substrate. Monolayer graphene was used as metal electrodes, 3–4 atomic layers of h-BN were used as the gate dielectric, and finally bilayers of WSe2 were used as the semiconducting channel material for the TFTs. The field effect carrier mobility was extracted to be 45 cm2/(V s), which exceeds the mobility values of state of the art amorphous silicon based TFTs by ∼100 times. The active device stack of WSe2–hBN–graphene was found to be more than 88% transparent over the entire visible spectrum and the device characteristics were unaltered for in-plane mechanical strain of up to 2%. The device demonstrated remarkable temperature stability over 77–400 K. Low contact resistance value of 1.4 kΩ-μm, subthreshold slope of 90 mv/decade, current ON–OFF ratio of 107, and presence of both electr...

327 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Band gap
86.8K papers, 2.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023341
2022918
2021640
20201,333
20192,015
20182,080