scispace - formally typeset
Search or ask a question
Topic

Thin-film transistor

About: Thin-film transistor is a research topic. Over the lifetime, 48425 publications have been published within this topic receiving 680879 citations. The topic is also known as: TFT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the monolithic integration of rubber-stamped thin-film organic transistors with polymer-dispersed liquid crystals (PDLCs) to create a multipixel, flexible display with plastic substrates.
Abstract: This letter describes the monolithic integration of rubber-stamped thin-film organic transistors with polymer-dispersed liquid crystals (PDLCs) to create a multipixel, flexible display with plastic substrates. We report the electro-optic switching behavior of the PDLCs as driven by the organic transistors, and we show that our displays operate robustly under flexing and have a contrast comparable to that of newsprint.

284 citations

Patent
29 Dec 2006
TL;DR: A liquid crystal display (LCD) device as mentioned in this paper includes an array substrate, a gate line formed on the array substrate; a data line forming between the gate line and the data line.
Abstract: A liquid crystal display (LCD) device includes an array substrate; a gate line formed on the array substrate; a data line formed on the array substrate crossing the gate lines; a thin film transistor formed on the array substrate, the thin film transistor being formed at an intersection between the gate line and the data line; a pixel electrode formed on the array substrate and connected to the thin film transistor; an insulating interlayer formed on an entire surface of the array substrate; a common electrode formed on the insulating interlayer and having a plurality of slits; a metal line formed on the insulating interlayer overlapping the data line and the common electrode; a color filter substrate attached to the array substrate; and a liquid crystal layer formed between the array substrate and the color filter substrate.

284 citations

Patent
24 Oct 2007
TL;DR: In this paper, a liquid crystal display is controlled by an electric field between the first electrode and the second electrode, and the liquid crystal is generated by the voltage between the two electrodes.
Abstract: To provide a semiconductor device, a liquid crystal display device, and an electronic device which have a wide viewing angle and in which the number of manufacturing steps, the number of masks, and manufacturing cost are reduced compared with a conventional one. The liquid crystal display device includes a first electrode formed over an entire surface of one side of a substrate; a first insulating film formed over the first electrode; a thin film transistor formed over the first insulating film; a second insulating film formed over the thin film transistor; a second electrode formed over the second insulating film and having a plurality of openings; and a liquid crystal over the second electrode. The liquid crystal is controlled by an electric field between the first electrode and the second electrode.

281 citations

Journal ArticleDOI
TL;DR: In this paper, high performance ZnO thin film transistors (TFTs) were fabricated using CaHfOx buffer layer between the channel and amorphous silicon?nitride gate insulator.
Abstract: We have fabricated high performance ZnO thin film transistors (TFTs) using CaHfOx buffer layer between ZnO channel and amorphous silicon?nitride gate insulator. The TFT structure, dimensions, and materials set are identical to those of the commercial amorphous silicon (a-Si) TFTs in active matrix liquid crystal display, except for the channel and buffer layers replacing a-Si. The field effect mobility can be as high as 7 cm2?V-1?s-1 for devices with maximum process temperature of 300?C. The process temperature can be reduced to 150?C without much degrading the performance, showing the possibility of the use of polymer substrate.

281 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the development of high-mobility carbon-nanotube thin-film transistors fabricated on a polymeric substrate, where the active semiconducting channel is composed of a random two-dimensional network of single-walled carbon nanotubes (SWNTs).
Abstract: We report the development of high-mobility carbon-nanotube thin-film transistors fabricated on a polymeric substrate. The active semiconducting channel in the devices is composed of a random two-dimensional network of single-walled carbon nanotubes (SWNTs). The devices exhibit a field-effect mobility of 150cm2∕Vs and a normalized transconductance of 0.5mS∕mm. The ratio of on-current (Ion) to off-current (Ioff) is ∼100 and is limited by metallic SWNTs in the network. With electronic purification of the SWNTs and improved gate capacitance we project that the transconductance can be increased to ∼10–100mS∕mm with a significantly higher value of Ion∕Ioff, thus approaching crystalline semiconductor-like performance on polymeric substrates.

280 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Band gap
86.8K papers, 2.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023341
2022918
2021640
20201,333
20192,015
20182,080