scispace - formally typeset
Search or ask a question
Topic

Thin-film transistor

About: Thin-film transistor is a research topic. Over the lifetime, 48425 publications have been published within this topic receiving 680879 citations. The topic is also known as: TFT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of bias stress on a passivation-free InZnO thin-film transistors (a-IZO TFTs) exposed to either the atmosphere or a vacuum were investigated.
Abstract: We investigated the effects of bias stress on a passivation-free InZnO thin-film transistors (a-IZO TFTs) exposed to either the atmosphere or a vacuum. The magnitude of threshold voltage shift increased with the application duration of bias stress, to an extent that was much larger in the atmosphere than in the vacuum. The threshold voltage recovered slowly to its nearly initial value when the gate bias stress was removed. The electrical metastability was attributed to the interaction between the exposed a-IZO backchannel and oxygen/moisture from the atmosphere, and a dynamic equilibrium was finally achieved, regardless of the polarity of stress voltage.

199 citations

Journal ArticleDOI
TL;DR: In this article, a homojunctioned amorphous InGaZnO (a-IGZO) thin film transistor (TFT) was proposed and compared to that of a conventional structured TFT.
Abstract: We proposed a homojunctioned amorphous InGaZnO (a-IGZO) thin film transistor (TFT) and compared its performance to that of a conventional structured TFT. The source/drain regions were formed in the a-IGZO channel layer using Ar and H2 plasma treatments, respectively. Hydrogen itself was found to act as a carrier of donors with H2 plasma treatment, which had effects to a depth of 50 nm. Our TFT had a field-effect mobility of 7.27 cm2/V s, an on/off ratio of 1.2×107, a threshold voltage of 0.96 V, and a subthreshold swing of 0.49 V/decade.

199 citations

Journal ArticleDOI
TL;DR: A comprehensive review and summary of the recently emerging work on the stability and reliability of AOS TFTs with respect to illumination, bias stress, ambient effects, surface passivation, mechanical stress, and defects, as well as to point out areas for future work are provided in this article.
Abstract: Thin-film transistors (TFTs) fabricated using amorphous oxide semiconductors (AOS) exhibit good electron mobility (5 to >; 50 cm2/V · s), they are transparent, and they can be processed at low temperatures. These new materials show a great promise for high-performance large-area electronics applications such as flexible electronics, transparent electronics, and analog current drivers for organic light-emitting diode displays. Before any of these applications can be commercialized, however, a strong understanding of the stability and reliability of AOS TFTs is needed. The purpose of this paper is to provide a comprehensive review and summary of the recently emerging work on the stability and reliability of AOS TFTs with respect to illumination, bias stress, ambient effects, surface passivation, mechanical stress, and defects, as well as to point out areas for future work. An overview of the TFT operation and expected reliability concerns as well as a brief summary of the instabilities in the well-known Si3N4/a-Si:H system is also included.

198 citations

Journal ArticleDOI
TL;DR: In this article, specific contact resistances between an amorphous oxide semiconductor, In-Ga-Zn-O, and various metallic electrodes, Ag, Au, In, Pt, Ti, polycrystalline indium tin oxide (ITO) and amorphrous indium zinc oxide (a-IZO), were examined.

198 citations

Journal ArticleDOI
TL;DR: In this article, location-controlled single-crystal Si regions on a SiO2 surface can be obtained in a glass-substrate compatible manner, via excimer-laser-based sequential lateral solidification of thin Si films using a beamlet shape that self-selects and extends a single grain over an arbitrarily large area.
Abstract: The fact that single-crystal Si would make an ideal material for thin-film transistor devices has long been recognized. Despite this awareness, a viable method by which such a material could be directly produced on a glass substrate has never been formulated. In this letter, it is shown experimentally that location-controlled single-crystal Si regions on a SiO2 surface can be obtained in a glass-substrate compatible manner, via excimer-laser-based sequential lateral solidification of thin Si films using a beamlet shape that self-selects and extends a single grain over an arbitrarily large area. This is accomplished by controlling the locations, shape, and extent of melting induced by the incident excimer-laser pulses, in such a manner as to induce interface-contour-affected sequential super-lateral growth of crystals, during which the tendency of grain boundaries to align approximately orthogonal to the solidifying interface is systematically exploited.

198 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Band gap
86.8K papers, 2.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023341
2022918
2021640
20201,333
20192,015
20182,080