scispace - formally typeset
Search or ask a question

Showing papers on "Three-dimensional face recognition published in 2013"


Proceedings ArticleDOI
01 Dec 2013
TL;DR: This work proposes a novel method, called Robust Cascaded Pose Regression (RCPR), which reduces exposure to outliers by detecting occlusions explicitly and using robust shape-indexed features, and shows that RCPR improves on previous landmark estimation methods on three popular face datasets.
Abstract: Human faces captured in real-world conditions present large variations in shape and occlusions due to differences in pose, expression, use of accessories such as sunglasses and hats and interactions with objects (e.g. food). Current face landmark estimation approaches struggle under such conditions since they fail to provide a principled way of handling outliers. We propose a novel method, called Robust Cascaded Pose Regression (RCPR) which reduces exposure to outliers by detecting occlusions explicitly and using robust shape-indexed features. We show that RCPR improves on previous landmark estimation methods on three popular face datasets (LFPW, LFW and HELEN). We further explore RCPR's performance by introducing a novel face dataset focused on occlusion, composed of 1,007 faces presenting a wide range of occlusion patterns. RCPR reduces failure cases by half on all four datasets, at the same time as it detects face occlusions with a 80/40% precision/recall.

835 citations


Journal ArticleDOI
TL;DR: A novel local feature descriptor, local directional number pattern (LDN), for face analysis, i.e., face and expression recognition, that encodes the directional information of the face's textures in a compact way, producing a more discriminative code than current methods.
Abstract: This paper proposes a novel local feature descriptor, local directional number pattern (LDN), for face analysis, i.e., face and expression recognition. LDN encodes the directional information of the face's textures (i.e., the texture's structure) in a compact way, producing a more discriminative code than current methods. We compute the structure of each micro-pattern with the aid of a compass mask that extracts directional information, and we encode such information using the prominent direction indices (directional numbers) and sign-which allows us to distinguish among similar structural patterns that have different intensity transitions. We divide the face into several regions, and extract the distribution of the LDN features from them. Then, we concatenate these features into a feature vector, and we use it as a face descriptor. We perform several experiments in which our descriptor performs consistently under illumination, noise, expression, and time lapse variations. Moreover, we test our descriptor with different masks to analyze its performance in different face analysis tasks.

469 citations


Proceedings ArticleDOI
01 Dec 2013
TL;DR: This paper proposes a new learning based face representation: the face identity-preserving (FIP) features, a deep network that combines the feature extraction layers and the reconstruction layer that significantly outperforms the state-of-the-art face recognition methods.
Abstract: Face recognition with large pose and illumination variations is a challenging problem in computer vision. This paper addresses this challenge by proposing a new learning based face representation: the face identity-preserving (FIP) features. Unlike conventional face descriptors, the FIP features can significantly reduce intra-identity variances, while maintaining discriminative ness between identities. Moreover, the FIP features extracted from an image under any pose and illumination can be used to reconstruct its face image in the canonical view. This property makes it possible to improve the performance of traditional descriptors, such as LBP [2] and Gabor [31], which can be extracted from our reconstructed images in the canonical view to eliminate variations. In order to learn the FIP features, we carefully design a deep network that combines the feature extraction layers and the reconstruction layer. The former encodes a face image into the FIP features, while the latter transforms them to an image in the canonical view. Extensive experiments on the large MultiPIE face database [7] demonstrate that it significantly outperforms the state-of-the-art face recognition methods.

320 citations


Proceedings ArticleDOI
23 Jun 2013
TL;DR: The composition of the database, evaluation protocols and baseline performance of PCA on the database are described and two interesting tricks, the facial symmetry and heterogeneous component analysis (HCA) are introduced to improve the performance.
Abstract: In recent years, heterogeneous face biometrics has attracted more attentions in the face recognition community. After published in 2009, the HFB database has been applied by tens of research groups and widely used for Near infrared vs. Visible light (NIR-VIS) face recognition. Despite its success the HFB database has two disadvantages: a limited number of subjects, lacking specific evaluation protocols. To address these issues we collected the NIR-VIS 2.0 database. It contains 725 subjects, imaged by VIS and NIR cameras in four recording sessions. Because the 3D modality in the HFB database was less used in the literature, we don't consider it in the current version. In this paper, we describe the composition of the database, evaluation protocols and present the baseline performance of PCA on the database. Moreover, two interesting tricks, the facial symmetry and heterogeneous component analysis (HCA) are also introduced to improve the performance.

307 citations


Proceedings ArticleDOI
22 Apr 2013
TL;DR: A newly developed 3D video database of spontaneous facial expressions in a diverse group of young adults is presented to promote the exploration of 3D spatiotemporal features in subtle facial expression, better understanding of the relation between pose and motion dynamics in facial action units, and deeper understanding of naturally occurring facial action.
Abstract: Facial expression is central to human experience. Its efficient and valid measurement is a challenge that automated facial image analysis seeks to address. Most publically available databases are limited to 2D static images or video of posed facial behavior. Because posed and un-posed (aka “spontaneous”) facial expressions differ along several dimensions including complexity and timing, well-annotated video of un-posed facial behavior is needed. Moreover, because the face is a three-dimensional deformable object, 2D video may be insufficient, and therefore 3D video archives are needed. We present a newly developed 3D video database of spontaneous facial expressions in a diverse group of young adults. Well-validated emotion inductions were used to elicit expressions of emotion and paralinguistic communication. Frame-level ground-truth for facial actions was obtained using the Facial Action Coding System. Facial features were tracked in both 2D and 3D domains using both person-specific and generic approaches. The work promotes the exploration of 3D spatiotemporal features in subtle facial expression, better understanding of the relation between pose and motion dynamics in facial action units, and deeper understanding of naturally occurring facial action.

304 citations


Journal ArticleDOI
TL;DR: It is argued that a probe face image, holistic or partial, can be sparsely represented by a large dictionary of gallery descriptors by adopting a variable-size description which represents each face with a set of keypoint descriptors.
Abstract: Numerous methods have been developed for holistic face recognition with impressive performance. However, few studies have tackled how to recognize an arbitrary patch of a face image. Partial faces frequently appear in unconstrained scenarios, with images captured by surveillance cameras or handheld devices (e.g., mobile phones) in particular. In this paper, we propose a general partial face recognition approach that does not require face alignment by eye coordinates or any other fiducial points. We develop an alignment-free face representation method based on Multi-Keypoint Descriptors (MKD), where the descriptor size of a face is determined by the actual content of the image. In this way, any probe face image, holistic or partial, can be sparsely represented by a large dictionary of gallery descriptors. A new keypoint descriptor called Gabor Ternary Pattern (GTP) is also developed for robust and discriminative face recognition. Experimental results are reported on four public domain face databases (FRGCv2.0, AR, LFW, and PubFig) under both the open-set identification and verification scenarios. Comparisons with two leading commercial face recognition SDKs (PittPatt and FaceVACS) and two baseline algorithms (PCA+LDA and LBP) show that the proposed method, overall, is superior in recognizing both holistic and partial faces without requiring alignment.

293 citations


Proceedings ArticleDOI
01 Sep 2013
TL;DR: The 3D Mask Attack Database (3DMAD), the first publicly available 3D spoofing database, recorded with a low-cost depth camera is introduced and it is shown that easily attainable facial masks can pose a serious threat to 2D face recognition systems and LBP is a powerful weapon to eliminate it.
Abstract: The problem of detecting face spoofing attacks (presentation attacks) has recently gained a well-deserved popularity. Mainly focusing on 2D attacks forged by displaying printed photos or replaying recorded videos on mobile devices, a significant portion of these studies ground their arguments on the flatness of the spoofing material in front of the sensor. In this paper, we inspect the spoofing potential of subject-specific 3D facial masks for 2D face recognition. Additionally, we analyze Local Binary Patterns based coun-termeasures using both color and depth data, obtained by Kinect. For this purpose, we introduce the 3D Mask Attack Database (3DMAD), the first publicly available 3D spoofing database, recorded with a low-cost depth camera. Extensive experiments on 3DMAD show that easily attainable facial masks can pose a serious threat to 2D face recognition systems and LBP is a powerful weapon to eliminate it.

274 citations


Proceedings ArticleDOI
01 Dec 2013
TL;DR: A two-stage cascaded deformable shape model to effectively and efficiently localize facial landmarks with large head pose variations and a group sparse learning method to automatically select the most salient facial landmarks is proposed.
Abstract: This paper addresses the problem of facial landmark localization and tracking from a single camera. We present a two-stage cascaded deformable shape model to effectively and efficiently localize facial landmarks with large head pose variations. For face detection, we propose a group sparse learning method to automatically select the most salient facial landmarks. By introducing 3D face shape model, we use procrustes analysis to achieve pose-free facial landmark initialization. For deformation, the first step uses mean-shift local search with constrained local model to rapidly approach the global optimum. The second step uses component-wise active contours to discriminatively refine the subtle shape variation. Our framework can simultaneously handle face detection, pose-free landmark localization and tracking in real time. Extensive experiments are conducted on both laboratory environmental face databases and face-in-the-wild databases. All results demonstrate that our approach has certain advantages over state-of-the-art methods in handling pose variations.

253 citations


Proceedings ArticleDOI
04 Jun 2013
TL;DR: A component-based face coding approach for liveness detection that makes good use of micro differences between genuine faces and fake faces is proposed and can achieve the best liveness Detection performance in three databases.
Abstract: Spoofing attacks mainly include printing artifacts, electronic screens and ultra-realistic face masks or models. In this paper, we propose a component-based face coding approach for liveness detection. The proposed method consists of four steps: (1) locating the components of face; (2) coding the low-level features respectively for all the components; (3) deriving the high-level face representation by pooling the codes with weights derived from Fisher criterion; (4) concatenating the histograms from all components into a classifier for identification. The proposed framework makes good use of micro differences between genuine faces and fake faces. Meanwhile, the inherent appearance differences among different components are retained. Extensive experiments on three published standard databases demonstrate that the method can achieve the best liveness detection performance in three databases.

249 citations


Proceedings ArticleDOI
15 Jan 2013
TL;DR: An algorithm is proposed which exploits the facial symmetry at the 3D point cloud level to obtain a canonical frontal view, shape and texture, of the faces irrespective of their initial pose, using a low resolution 3D sensor for robust face recognition under challenging conditions.
Abstract: We present an algorithm that uses a low resolution 3D sensor for robust face recognition under challenging conditions. A preprocessing algorithm is proposed which exploits the facial symmetry at the 3D point cloud level to obtain a canonical frontal view, shape and texture, of the faces irrespective of their initial pose. This algorithm also fills holes and smooths the noisy depth data produced by the low resolution sensor. The canonical depth map and texture of a query face are then sparse approximated from separate dictionaries learned from training data. The texture is transformed from the RGB to Discriminant Color Space before sparse coding and the reconstruction errors from the two sparse coding steps are added for individual identities in the dictionary. The query face is assigned the identity with the smallest reconstruction error. Experiments are performed using a publicly available database containing over 5000 facial images (RGB-D) with varying poses, expressions, illumination and disguise, acquired using the Kinect sensor. Recognition rates are 96.7% for the RGB-D data and 88.7% for the noisy depth data alone. Our results justify the feasibility of low resolution 3D sensors for robust face recognition.

240 citations


Proceedings ArticleDOI
23 Jun 2013
TL;DR: Extensive experiments on FERET and PIE show the proposed method outperforms state-of-the-art methods significantly, meanwhile, the method works well on LFW.
Abstract: Most existing pose robust methods are too computational complex to meet practical applications and their performance under unconstrained environments are rarely evaluated. In this paper, we propose a novel method for pose robust face recognition towards practical applications, which is fast, pose robust and can work well under unconstrained environments. Firstly, a 3D deformable model is built and a fast 3D model fitting algorithm is proposed to estimate the pose of face image. Secondly, a group of Gabor filters are transformed according to the pose and shape of face image for feature extraction. Finally, PCA is applied on the pose adaptive Gabor features to remove the redundances and Cosine metric is used to evaluate the similarity. The proposed method has three advantages: (1) The pose correction is applied in the filter space rather than image space, which makes our method less affected by the precision of the 3D model, (2) By combining the holistic pose transformation and local Gabor filtering, the final feature is robust to pose and other negative factors in face recognition, (3) The 3D structure and facial symmetry are successfully used to deal with self-occlusion. Extensive experiments on FERET and PIE show the proposed method outperforms state-of-the-art methods significantly, meanwhile, the method works well on LFW.

Proceedings ArticleDOI
25 Jun 2013
TL;DR: The Point-and-Shoot Face Recognition Challenge (PaSC) is introduced, featuring 9,376 still images of 293 people balanced with respect to distance to the camera, alternative sensors, frontal versus not-frontal views, and varying location.
Abstract: Inexpensive “point-and-shoot” camera technology has combined with social network technology to give the general population a motivation to use face recognition technology. Users expect a lot; they want to snap pictures, shoot videos, upload, and have their friends, family and acquaintances more-or-less automatically recognized. Despite the apparent simplicity of the problem, face recognition in this context is hard. Roughly speaking, failure rates in the 4 to 8 out of 10 range are common. In contrast, error rates drop to roughly 1 in 1,000 for well controlled imagery. To spur advancement in face and person recognition this paper introduces the Point-and-Shoot Face Recognition Challenge (PaSC). The challenge includes 9,376 still images of 293 people balanced with respect to distance to the camera, alternative sensors, frontal versus not-frontal views, and varying location. There are also 2,802 videos for 265 people: a subset of the 293. Verification results are presented for public baseline algorithms and a commercial algorithm for three cases: comparing still images to still images, videos to videos, and still images to videos.

Journal ArticleDOI
TL;DR: A unified probabilistic framework based on the dynamic Bayesian network is introduced to simultaneously and coherently represent the facial evolvement in different levels, their interactions and their observations.
Abstract: The tracking and recognition of facial activities from images or videos have attracted great attention in computer vision field. Facial activities are characterized by three levels. First, in the bottom level, facial feature points around each facial component, i.e., eyebrow, mouth, etc., capture the detailed face shape information. Second, in the middle level, facial action units, defined in the facial action coding system, represent the contraction of a specific set of facial muscles, i.e., lid tightener, eyebrow raiser, etc. Finally, in the top level, six prototypical facial expressions represent the global facial muscle movement and are commonly used to describe the human emotion states. In contrast to the mainstream approaches, which usually only focus on one or two levels of facial activities, and track (or recognize) them separately, this paper introduces a unified probabilistic framework based on the dynamic Bayesian network to simultaneously and coherently represent the facial evolvement in different levels, their interactions and their observations. Advanced machine learning methods are introduced to learn the model based on both training data and subjective prior knowledge. Given the model and the measurements of facial motions, all three levels of facial activities are simultaneously recognized through a probabilistic inference. Extensive experiments are performed to illustrate the feasibility and effectiveness of the proposed model on all three level facial activities.

Proceedings ArticleDOI
01 Dec 2013
TL;DR: A unified model for coupled dictionary and feature space learning that not only observes a common feature space for associating cross-domain image data for recognition purposes, but is able to jointly update the dictionaries in each image domain for improved representation.
Abstract: Cross-domain image synthesis and recognition are typically considered as two distinct tasks in the areas of computer vision and pattern recognition. Therefore, it is not clear whether approaches addressing one task can be easily generalized or extended for solving the other. In this paper, we propose a unified model for coupled dictionary and feature space learning. The proposed learning model not only observes a common feature space for associating cross-domain image data for recognition purposes, the derived feature space is able to jointly update the dictionaries in each image domain for improved representation. This is why our method can be applied to both cross-domain image synthesis and recognition problems. Experiments on a variety of synthesis and recognition tasks such as single image super-resolution, cross-view action recognition, and sketch-to-photo face recognition would verify the effectiveness of our proposed learning model.

Proceedings ArticleDOI
23 Jun 2013
TL;DR: This work presents a novel and robust exemplar-based face detector that integrates image retrieval and discriminative learning, and can detect faces under challenging conditions without explicitly modeling their variations.
Abstract: Detecting faces in uncontrolled environments continues to be a challenge to traditional face detection methods due to the large variation in facial appearances, as well as occlusion and clutter. In order to overcome these challenges, we present a novel and robust exemplar-based face detector that integrates image retrieval and discriminative learning. A large database of faces with bounding rectangles and facial landmark locations is collected, and simple discriminative classifiers are learned from each of them. A voting-based method is then proposed to let these classifiers cast votes on the test image through an efficient image retrieval technique. As a result, faces can be very efficiently detected by selecting the modes from the voting maps, without resorting to exhaustive sliding window-style scanning. Moreover, due to the exemplar-based framework, our approach can detect faces under challenging conditions without explicitly modeling their variations. Evaluation on two public benchmark datasets shows that our new face detection approach is accurate and efficient, and achieves the state-of-the-art performance. We further propose to use image retrieval for face validation (in order to remove false positives) and for face alignment/landmark localization. The same methodology can also be easily generalized to other face-related tasks, such as attribute recognition, as well as general object detection.

Journal ArticleDOI
TL;DR: This paper proposes to exploit the symmetry of the face to generate new samples and devise a representation based method to perform face recognition that outperforms state-of-the-art face recognition methods including the sparse representation classification (SRC), linear regression classification (LRC), collaborative representation (CR) and two-phase test sample sparse representation (TPTSSR).

Journal ArticleDOI
TL;DR: A novel framework that can recognize facial expressions very efficiently and with high accuracy even for very low resolution facial images is presented, which exceeds state-of-the-art methods for expression recognition on low resolution images.

Proceedings ArticleDOI
04 Jun 2013
TL;DR: A method to automatically detect the presence of makeup in face images by extracting a feature vector that captures the shape, texture and color characteristics of the input face, and employs a classifier to determine the presence or absence of makeup.
Abstract: Facial makeup has the ability to alter the appearance of a person. Such an alteration can degrade the accuracy of automated face recognition systems, as well as that of meth-ods estimating age and beauty from faces. In this work, we design a method to automatically detect the presence of makeup in face images. The proposed algorithm extracts a feature vector that captures the shape, texture and color characteristics of the input face, and employs a classifier to determine the presence or absence of makeup. Besides extracting features from the entire face, the algorithm also considers portions of the face pertaining to the left eye, right eye, and mouth. Experiments on two datasets consisting of 151 subjects (600 images) and 125 subjects (154 images), respectively, suggest that makeup detection rates of up to 93.5% (at a false positive rate of 1%) can be obtained using the proposed approach. Further, an adaptive pre-processing scheme that exploits knowledge of the presence or absence of facial makeup to improve the matching accuracy of a face matcher is presented.

Journal ArticleDOI
TL;DR: A method for reconstructing the virtual frontal view from a given nonfrontal face image using Markov random fields (MRFs) and an efficient variant of the belief propagation algorithm to improve the performance of the pose normalization method in face recognition.
Abstract: One of the key challenges for current face recognition techniques is how to handle pose variations between the probe and gallery face images. In this paper, we present a method for reconstructing the virtual frontal view from a given nonfrontal face image using Markov random fields (MRFs) and an efficient variant of the belief propagation algorithm. In the proposed approach, the input face image is divided into a grid of overlapping patches, and a globally optimal set of local warps is estimated to synthesize the patches at the frontal view. A set of possible warps for each patch is obtained by aligning it with images from a training database of frontal faces. The alignments are performed efficiently in the Fourier domain using an extension of the Lucas-Kanade algorithm that can handle illumination variations. The problem of finding the optimal warps is then formulated as a discrete labeling problem using an MRF. The reconstructed frontal face image can then be used with any face recognition technique. The two main advantages of our method are that it does not require manually selected facial landmarks or head pose estimation. In order to improve the performance of our pose normalization method in face recognition, we also present an algorithm for classifying whether a given face image is at a frontal or nonfrontal pose. Experimental results on different datasets are presented to demonstrate the effectiveness of the proposed approach.

Proceedings ArticleDOI
04 Jun 2013
TL;DR: A novel face liveness detection approach to counter spoofing attacks by recovering sparse 3D facial structure by detecting facial landmarks and select key frames and training a Support Vector Machine to distinguish the genuine and fake faces.
Abstract: Face recognition, which is security-critical, has been widely deployed in our daily life. However, traditional face recognition technologies in practice can be spoofed easily, for example, by using a simple printed photo. In this paper, we propose a novel face liveness detection approach to counter spoofing attacks by recovering sparse 3D facial structure. Given a face video or several images captured from more than two viewpoints, we detect facial landmarks and select key frames. Then, the sparse 3D facial structure can be recoveredfrom the selected key frames. Finally, an Support Vector Machine (SVM) classifier is trained to distinguish the genuine and fake faces. Compared with the previous works, the proposed method has the following advantages. First, it gives perfect liveness detection results, which meets the security requirement of face biometric systems. Second, it is independent on cameras or systems, which works well on different devices. Experiments with genuine faces versus planar photo faces and warped photo faces demonstrate the superiority of the proposed method over the state-of-the-art liveness detection methods.

Journal ArticleDOI
TL;DR: This work proposes a morphological graph model to describe the morphological structure of the error of the occlusion from two aspects: the error morphology and the error distribution.
Abstract: Face recognition with occlusion is common in the real world. Inspired by the works of structured sparse representation, we try to explore the structure of the error incurred by occlusion from two aspects: the error morphology and the error distribution. Since human beings recognize the occlusion mainly according to its region shape or profile without knowing accurately what the occlusion is, we argue that the shape of the occlusion is also an important feature. We propose a morphological graph model to describe the morphological structure of the error. Due to the uncertainty of the occlusion, the distribution of the error incurred by occlusion is also uncertain. However, we observe that the unoccluded part and the occluded part of the error measured by the correntropy induced metric follow the exponential distribution, respectively. Incorporating the two aspects of the error structure, we propose the structured sparse error coding for face recognition with occlusion. Our extensive experiments demonstrate that the proposed method is more stable and has higher breakdown point in dealing with the occlusion problems in face recognition as compared to the related state-of-the-art methods, especially for the extreme situation, such as the high level occlusion and the low feature dimension.

Journal Article
TL;DR: This research work empirically evaluate face recognition which considers both shape and texture information to represent face images based on Local Binary Patterns for person-independent face recognition.
Abstract: The face of a human being conveys a lot of information about identity and emotional state of the person. Face recognition is an interesting and challenging problem, and impacts important applications in many areas such as identification for law enforcement, authentication for banking and security system access, and personal identification among others. In our research work mainly consists of three parts, namely face representation, feature extraction and classification. Face representation represents how to model a face and determines the successive algorithms of detection and recognition. The most useful and unique features of the face image are extracted in the feature extraction phase. In the classification the face image is compared with the images from the database. In our research work, we empirically evaluate face recognition which considers both shape and texture information to represent face images based on Local Binary Patterns for person-independent face recognition. The face area is first divided into small regions from which Local Binary Patterns (LBP), histograms are extracted and concatenated into a single feature vector. This feature vector forms an efficient representation of the face and is used to measure similarities between images.

Proceedings ArticleDOI
01 Dec 2013
TL;DR: An automated attendance management system, which is based on face detection and recognition algorithms, automatically detects the student when he enters the class room and marks the attendance by recognizing him and saves the time.
Abstract: In this paper we propose an automated attendance management system This system, which is based on face detection and recognition algorithms, automatically detects the student when he enters the class room and marks the attendance by recognizing him The system architecture and algorithms used in each stage are described in this paper Different real time scenarios are considered to evaluate the performance of various face recognition systems This paper also proposes the techniques to be used in order to handle the threats like spoofing When compared to traditional attendance marking this system saves the time and also helps to monitor the students

Journal ArticleDOI
TL;DR: A kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images.
Abstract: Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.

Journal ArticleDOI
TL;DR: A multiobjective evolutionary granular algorithm is proposed to match face images before and after plastic surgery and yields high identification accuracy as compared to existing algorithms and a commercial face recognition system.
Abstract: Widespread acceptability and use of biometrics for person authentication has instigated several techniques for evading identification. One such technique is altering facial appearance using surgical procedures that has raised a challenge for face recognition algorithms. Increasing popularity of plastic surgery and its effect on automatic face recognition has attracted attention from the research community. However, the nonlinear variations introduced by plastic surgery remain difficult to be modeled by existing face recognition systems. In this research, a multiobjective evolutionary granular algorithm is proposed to match face images before and after plastic surgery. The algorithm first generates non-disjoint face granules at multiple levels of granularity. The granular information is assimilated using a multiobjective genetic approach that simultaneously optimizes the selection of feature extractor for each face granule along with the weights of individual granules. On the plastic surgery face database, the proposed algorithm yields high identification accuracy as compared to existing algorithms and a commercial face recognition system.

Journal ArticleDOI
01 Jan 2013
TL;DR: A novel framework for real-world face recognition in uncontrolled settings named Face Analysis for Commercial Entities (FACE), which adopts reliability indices, which estimate the “acceptability” of the final identification decision made by the classifier.
Abstract: Face recognition has made significant advances in the last decade, but robust commercial applications are still lacking. Current authentication/identification applications are limited to controlled settings, e.g., limited pose and illumination changes, with the user usually aware of being screened and collaborating in the process. Among others, pose and illumination changes are limited. To address challenges from looser restrictions, this paper proposes a novel framework for real-world face recognition in uncontrolled settings named Face Analysis for Commercial Entities (FACE). Its robustness comes from normalization (“correction”) strategies to address pose and illumination variations. In addition, two separate image quality indices quantitatively assess pose and illumination changes for each biometric query, before submitting it to the classifier. Samples with poor quality are possibly discarded or undergo a manual classification or, when possible, trigger a new capture. After such filter, template similarity for matching purposes is measured using a localized version of the image correlation index. Finally, FACE adopts reliability indices, which estimate the “acceptability” of the final identification decision made by the classifier. Experimental results show that the accuracy of FACE (in terms of recognition rate) compares favorably, and in some cases by significant margins, against popular face recognition methods. In particular, FACE is compared against SVM, incremental SVM, principal component analysis, incremental LDA, ICA, and hierarchical multiscale local binary pattern. Testing exploits data from different data sets: CelebrityDB, Labeled Faces in the Wild, SCface, and FERET. The face images used present variations in pose, expression, illumination, image quality, and resolution. Our experiments show the benefits of using image quality and reliability indices to enhance overall accuracy, on one side, and to provide for individualized processing of biometric probes for better decision-making purposes, on the other side. Both kinds of indices, owing to the way they are defined, can be easily integrated within different frameworks and off-the-shelf biometric applications for the following: 1) data fusion; 2) online identity management; and 3) interoperability. The results obtained by FACE witness a significant increase in accuracy when compared with the results produced by the other algorithms considered.

Proceedings ArticleDOI
04 Jun 2013
TL;DR: A framework, termed as Aravrta1, is proposed, which classifies the local facial regions of both visible and thermal face images into biometric (regions without disguise) and non-biometric (Regions with disguise) classes, and improves the performance compared to existing algorithms.
Abstract: Face verification, though for humans seems to be an easy task, is a long-standing research area. With challenging covariates such as disguise or face obfuscation, automatically verifying the identity of a person is assumed to be very hard. This paper explores the feasibility of face verification under disguise variations using multi-spectrum (visible and thermal) face images. We propose a framework, termed as Aravrta1, which classifies the local facial regions of both visible and thermal face images into biometric (regions without disguise) and non-biometric (regions with disguise) classes. The biometric patches are then used for facial feature extraction and matching. The performance of the algorithm is evaluated on the IHTD In and Beyond Visible Spectrum Disguise database that is prepared by the authors and contains images pertaining to 75 subjects with different kinds of disguise variations. The experimental results suggest that the proposed framework improves the performance compared to existing algorithms, however there is a need for more research to address this important covariate.

Journal ArticleDOI
TL;DR: It is demonstrated on three public datasets and an operational dataset consisting of face images of 8000 subjects, that the proposed component-based representation provides higher recognition accuracies over holistic-based representations.
Abstract: This paper presents a framework for component-based face alignment and representation that demonstrates improvements in matching performance over the more common holistic approach to face alignment and representation. This work is motivated by recent evidence from the cognitive science community demonstrating the efficacy of component-based facial representations. The component-based framework presented in this paper consists of the following major steps: 1) landmark extraction using Active Shape Models (ASM), 2) alignment and cropping of components using Procrustes Analysis, 3) representation of components with Multiscale Local Binary Patterns (MLBP), 4) per-component measurement of facial similarity, and 5) fusion of per-component similarities. We demonstrate on three public datasets and an operational dataset consisting of face images of 8000 subjects, that the proposed component-based representation provides higher recognition accuracies over holistic-based representations. Additionally, we show that the proposed component-based representations: 1) are more robust to changes in facial pose, and 2) improve recognition accuracy on occluded face images in forensic scenarios.

Journal ArticleDOI
TL;DR: A novel 3D face recognition algorithm using Local Binary Pattern under expression varieties, which is an extension of the LBP operator widely used in ordinary facial analysis, and is tested on BJUT-3D and FRGC v2.0 databases, achieving promising results.

Proceedings ArticleDOI
01 Sep 2013
TL;DR: The experimental results indicate that the RGB-D information obtained by Kinect can be used to achieve improved face recognition performance compared to existing 2D and 3D approaches.
Abstract: Face recognition algorithms generally use 2D images for feature extraction and matching. In order to achieve better performance, 3D faces captured via specialized acquisition methods have been used to develop improved algorithms. While such 3D images remain difficult to obtain due to several issues such as cost and accessibility, RGB-D images captured by low cost sensors (e.g. Kinect) are comparatively easier to acquire. This research introduces a novel face recognition algorithm for RGB-D images. The proposed algorithm computes a descriptor based on the entropy of RGB-D faces along with the saliency feature obtained from a 2D face. The probe RGB-D descriptor is used as input to a random decision forest classifier to establish the identity. This research also presents a novel RGB-D face database pertaining to 106 individuals. The experimental results indicate that the RGB-D information obtained by Kinect can be used to achieve improved face recognition performance compared to existing 2D and 3D approaches.