scispace - formally typeset
Search or ask a question
Topic

Three-phase

About: Three-phase is a research topic. Over the lifetime, 16801 publications have been published within this topic receiving 159477 citations.


Papers
More filters
Journal ArticleDOI
30 Sep 2001
TL;DR: In this article, a step-by-step procedure for designing the LCL filter of a front-end three-phase active rectifier is proposed to reduce the switching frequency ripple at a reasonable cost, while at the same time achieving a high-performance front end rectifier.
Abstract: This paper proposes a step-by-step procedure for designing the LCL filter of a front-end three-phase active rectifier. The primary goal is to reduce the switching frequency ripple at a reasonable cost, while at the same time achieving a high-performance front-end rectifier (as characterized by a rapid dynamic response and good stability margin). An example LCL filter design is reported and a filter has been built and tested using the values obtained from this design. The experimental results demonstrate the performance of the design procedure both for the LCL filter and for the rectifier controller. The system is stable and the grid current harmonic content is low both in the lowand high-frequency ranges. Moreover, the good agreement that was obtained between simulation and experimental results validates the proposed approach. Hence, the design procedure and the simulation model provide a powerful tool to design an LCL-filter-based active rectifier while avoiding trial-and-error procedures that can result in having to build several filter prototypes.

2,147 citations

Journal ArticleDOI
TL;DR: Current control techniques for three-phase voltage-source pulsewidth modulated converters, including bang-bang (hysteresis, delta modulation) controllers and predictive controllers with on-line optimization are reviewed.
Abstract: The aim of this paper is to present a review of current control techniques for three-phase voltage-source pulsewidth modulated converters. Various techniques, different in concept, have been described in two main groups: linear and nonlinear. The first includes proportional integral (stationary and synchronous) and state feedback controllers, and predictive techniques with constant switching frequency. The second comprises bang-bang (hysteresis, delta modulation) controllers and predictive controllers with on-line optimization. New trends in current control-neural networks and fuzzy-logic-based controllers-are discussed, as well. Selected oscillograms accompany the presentation in order to illustrate properties of the described controller groups.

2,086 citations

Journal ArticleDOI
02 Oct 1988
TL;DR: In this paper, three DC/DC converter topologies suitable for high power-density high power applications are presented, which operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency.
Abstract: Three DC/DC converter topologies suitable for high-power-density high-power applications are presented. All three circuits operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency. The three-phase dual-bridge converter proposed is shown to have the most favorable characteristics. This converter consists of two three-phase inverter stages operating in a high-frequency six-step mode. In contrast to existing single-phase AC-link DC/DC converters, lower turn-off peak currents in the power devices and lower RMS current ratings for both the input and output filter capacitors are obtained. This is in addition to smaller filter element values due to the higher-frequency content of the input and output waveforms. Furthermore, the use of a three-phase symmetrical transformer instead of single-phase transformers and a better utilization of the available apparent power of the transformer (as a consequence of the controlled output inverter) significantly increase the power density attainable. >

2,056 citations

Journal ArticleDOI
TL;DR: In this article, the phase tracking system of the three phase utility interface inverters is investigated in both continuous and discrete-time domains, and the optimization method is considered for the second order PLL system.
Abstract: The analysis and design of the phase-locked loop (PLL) system is presented for the phase tracking system of the three phase utility interface inverters. The dynamic behavior of the closed loop PLL system is investigated in both continuous and discrete-time domains, and the optimization method is considered for the second order PLL system. In particular, the performance of the three phase PLL system is analyzed in the distorted utility conditions such as the phase unbalancing, harmonics, and offset caused by the nonlinear load conditions and measurement errors. The tracking errors under these distorted utility conditions are also derived. The phase tracking system is implemented in a digital manner using a digital signal processor (DSP) to verify the analytic results. The design considerations for the phase tracking system are deduced from the analytic and experimental results.

1,129 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a space vector modulated three-phase-to-three-phase matrix converter with input power factor correction, which is theoretically derived from the desired average transfer functions, using the indirect transfer function approach.
Abstract: Analysis, design, and implementation of the space vector modulated three-phase to three-phase matrix converter with input power factor correction are presented. The majority of published research results on the matrix converter control are given an overview, and the one which employs simultaneous output-voltage and input-current space vector modulation, is systematically reviewed. The modulation algorithm is theoretically derived from the desired average transfer functions, using the indirect transfer function approach. The algorithm is verified through implementation of a 2 kVA experimental matrix converter driving a standard induction motor as a load. The switching frequency is 20 kHz. The modulator is implemented with a digital signal processor. The resultant output voltages and input currents are sinusoidal, practically without low-frequency harmonics. The input power factor is above 0.99 in the whole operating range.

891 citations


Network Information
Related Topics (5)
Wind power
99K papers, 1.5M citations
88% related
Electric power system
133K papers, 1.7M citations
87% related
Voltage
296.3K papers, 1.7M citations
87% related
Capacitor
166.6K papers, 1.4M citations
87% related
Control theory
299.6K papers, 3.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023111
2022291
2021475
2020826
20191,037
20181,103