scispace - formally typeset
Search or ask a question
Topic

Three-phase

About: Three-phase is a research topic. Over the lifetime, 16801 publications have been published within this topic receiving 159477 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an implementation of a simple yet high performance digital current mode controller that achieves high power factor operation for a three phase boost rectifier is described without input voltage sensing and without transformation of the control variables into rotating reference frame.
Abstract: In this paper the implementation of a simple yet high performance digital current mode controller that achieves high power factor operation for three phase boost rectifier is described. The indicated objective is achieved without input voltage sensing and without transformation of the control variables into rotating reference frame. The controller uses the concept of resistance emulation for shaping of input current like input voltage in digital implementation. Two decoupled fixed frequency current mode controllers calculate the switching instants for equivalent single phase boost rectifiers. A combined switching strategy is developed in the form of space vectors to simultaneously satisfy the timing requirements of both the current mode controllers in a switching period. Conventional phase locked loop (PLL) is not required as converter switching is self-synchronized with the input voltage. Analytical formula is derived to obtain the steady state stability condition of the converter. A linear, low frequency, small signal model of the three phase boost rectifier is developed and verified by measurement of the voltage control transfer function. In implementation Texas Instruments's DSP TMS320F240F is used as the digital controller. The algorithm is tested on a 10-kW, 700-V dc, three phase boost rectifier.

60 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an optimal PI controller for DVR for enhancing the performance of a hybrid PV-wind-fuel cell, which includes three renewable energy sources, namely, solar PV cells, wind turbines based permanent magnet synchronous generator and fuel cells.

60 citations

Journal ArticleDOI
TL;DR: In this article, an all-scalar-control and pulsewidth-modulation (PWM) approach for the four-leg-inverter (FLI)-based three-phase transformerless four-wire power supply (PS) is proposed.
Abstract: An all-scalar-control and pulsewidth-modulation (PWM) approach for the four-leg-inverter (FLI)-based three-phase transformerless four-wire power supply (PS) is proposed. The output voltage of each phase is controlled independently, and its controller is formed by a stationary-frame resonant-filter bank accompanied with proportional-control and output-capacitor current-based active-damping loops. The simple and easy to implement scalar-control method exhibits superior overall steady-state and dynamic performance in the PS applications involving loads with high crest factor and/or significant load imbalance. Utilizing the inverter zero-state partitioning, a generalized form of scalar PWM for the FLI is developed. A novel minimum loss discontinuous PWM method, which provides minimum switching losses under all loading conditions (including load imbalance), is derived. This simple scalar method provides superior performance, and unlike the vector methods, it is easy to implement. The controller and modulator design and implementation details for the system are given. Linear and nonlinear loads for balanced and imbalanced load operating conditions are considered. The scalar-control and PWM methods are proven by means of theory, simulations, and thorough laboratory experiments of a 5-kVA PS.

60 citations

Journal ArticleDOI
01 Nov 2004
TL;DR: In this article, the authors describe an ac/dc converter system consisting of a voltage-source converter (VSC) with purely capacitive snubbers and a two-phase by three-phase cycloconverter, connected via a medium-frequency transformer.
Abstract: This paper describes an ac/dc converter system consisting of a voltage-source converter (VSC) with purely capacitive snubbers and a two-phase by three-phase cycloconverter, connected via a medium-frequency (MF) transformer. By alternately commutating the two converters, it is possible to achieve beneficial switching conditions for all semiconductor devices. A commutation and modulation algorithm is described, which allows for pulsewidth-modulation control of the output voltage while maintaining soft switching. Low-load operation of the converter is a potential difficulty because the load current may be insufficient for recharging the snubber capacitors of the VSC. However, if the cycloconverter is used to momentarily short circuit the transformer, a quasi-resonant commutation mode of the VSC can be achieved, making a fast and soft commutation of the VSC down to zero load possible, without an auxiliary circuit. Furthermore, the design and operation of a 40-kVA prototype converter system are described. The experimental results from the prototype clearly show the practical feasibility of the studied concept.

59 citations

Journal ArticleDOI
TL;DR: In this article, a multipurpose photovoltaic (PV) system using a lattice wave digital filter (LWDF)-based control approach was developed for integrating the active power to the distribution system with variable PV insolation.
Abstract: This paper presents a multipurpose photovoltaic (PV) system using a lattice wave digital filter (LWDF)-based control approach. The multipurpose PV system is developed for integrating the active power to the distribution system with variable PV insolation and compensating the nonlinear loads connected at point-of-common coupling. The PV system is multifunctional; therefore, it serves various purposes. It injects the active power of solar PV array to the grid. It mitigates harmonics of loads and provides grid currents balancing. The PV system incorporates a PV array, a boost converter, a voltage-source converter (VSC), a nonlinear load, and a distribution system. The boost converter is utilized for maximum power extraction from PV array using an incremental-conductance-based maximum power point tracking technique. To control the grid-tied VSC, a LWDF-based control approach is proposed. In addition, this approach is able to produce the desired sinusoidal fundamental component of load current to estimate the grid reference currents. The aim is to implement this control as it has many properties like low-pass band sensitivity, good dynamic response, and reduction in a dc-offset noise error. The varieties of experimental results are presented to validate the control of a PV system.

59 citations


Network Information
Related Topics (5)
Wind power
99K papers, 1.5M citations
88% related
Electric power system
133K papers, 1.7M citations
87% related
Voltage
296.3K papers, 1.7M citations
87% related
Capacitor
166.6K papers, 1.4M citations
87% related
Control theory
299.6K papers, 3.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023111
2022291
2021475
2020826
20191,037
20181,103