scispace - formally typeset
Search or ask a question

Showing papers on "Thunderstorm published in 2007"


Journal ArticleDOI
TL;DR: The best estimate of the annual global LNOx nitrogen oxides nitrogen mass source and its uncertainty range is (5±3) Tg a−1 in this paper, implying larger flash-specific NOx emissions.
Abstract: . The knowledge of the lightning-induced nitrogen oxides (LNOx) source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation emissions, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more than 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 44±5 s−1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a "typical" thunderstorm flash produces 15 (2–40)×1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (5±3) Tg a−1 in this study. In spite of a smaller global flash rate, the best estimate is essentially the same as in some earlier reviews, implying larger flash-specific NOx emissions. The paper estimates the LNOx accuracy required for various applications and lays out strategies for improving estimates in the future. An accuracy of about 1 Tg a−1 or 20%, as necessary in particular for understanding tropical tropospheric chemistry, is still a challenging goal.

573 citations


Journal ArticleDOI
TL;DR: In this article, the authors use global climate models and a high-resolution regional climate model to examine the larger-scale (or "environmental") meteorological conditions that foster severe thunderstorm formation.
Abstract: Severe thunderstorms comprise an extreme class of deep convective clouds and produce high-impact weather such as destructive surface winds, hail, and tornadoes. This study addresses the question of how severe thunderstorm frequency in the United States might change because of enhanced global radiative forcing associated with elevated greenhouse gas concentrations. We use global climate models and a high-resolution regional climate model to examine the larger-scale (or “environmental”) meteorological conditions that foster severe thunderstorm formation. Across this model suite, we find a net increase during the late 21st century in the number of days in which these severe thunderstorm environmental conditions (NDSEV) occur. Attributed primarily to increases in atmospheric water vapor within the planetary boundary layer, the largest increases in NDSEV are shown during the summer season, in proximity to the Gulf of Mexico and Atlantic coastal regions. For example, this analysis suggests a future increase in NDSEV of 100% or more in locations such as Atlanta, GA, and New York, NY. Any direct application of these results to the frequency of actual storms also must consider the storm initiation.

331 citations


Journal ArticleDOI
TL;DR: In this paper, a sample of 1185 Rapid Update Cycle (RUC) model analysis (0 h) proximity soundings, within 40 km and 30 min of radar-identified discrete storms, was categorized by several storm types: significantly tornadic supercells (F2 or greater damage), weakly tornadic (F0-F1 damage), nontornadic supercell, elevated right-moving supercells, storms with marginal supercell characteristics, and nonsupercells.
Abstract: A sample of 1185 Rapid Update Cycle (RUC) model analysis (0 h) proximity soundings, within 40 km and 30 min of radar-identified discrete storms, was categorized by several storm types: significantly tornadic supercells (F2 or greater damage), weakly tornadic supercells (F0–F1 damage), nontornadic supercells, elevated right-moving supercells, storms with marginal supercell characteristics, and nonsupercells. These proximity soundings served as the basis for calculations of storm-relative helicity and bulk shear intended to apply across a broad spectrum of thunderstorm types. An effective storm inflow layer was defined in terms of minimum constraints on lifted parcel CAPE and convective inhibition (CIN). Sixteen CAPE and CIN constraint combinations were examined, and the smallest CAPE (25 and 100 J kg−1) and largest CIN (−250 J kg−1) constraints provided the greatest probability of detecting an effective inflow layer within an 835-supercell subset of the proximity soundings. Effective storm-relativ...

275 citations



01 Dec 2007
TL;DR: In this paper, a combination of observational and modeling results are presented that indicate two principal ways in which upward discharges can be produced. But the cause and nature of these discharges remain a mystery.
Abstract: Blue jets, gigantic jets, cloud-to-cloud discharges and cloud-to-ground lightning are all electrical discharges from thunderclouds. An analysis of numerical simulations and observations of these phenomena places them all in a unifying framework. Thunderstorms occasionally produce upward discharges, called blue jets and gigantic jets, that propagate out of the storm top towards or up to the ionosphere1,2,3,4. Whereas the various types of intracloud and cloud-to-ground lightning are reasonably well understood, the cause and nature of upward discharges remains a mystery. Here, we present a combination of observational and modelling results that indicate two principal ways in which upward discharges can be produced. The modelling indicates that blue jets occur as a result of electrical breakdown between the upper storm charge and the screening charge attracted to the cloud top; they are predicted to occur 5–10 s or less after a cloud-to-ground or intracloud discharge produces a sudden charge imbalance in the storm. An observation is presented of an upward discharge that supports this basic mechanism. In contrast, we find that gigantic jets begin as a normal intracloud discharge between dominant mid-level charge and a screening-depleted upper-level charge, that continues to propagate out of the top of the storm. Observational support for this mechanism comes from similarity with ‘bolt-from-the-blue’ discharges5 and from data on the polarity of gigantic jets6. We conclude that upward discharges are analogous to cloud-to-ground lightning. Our explanation provides a unifying view of how lightning escapes from a thundercloud.

159 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the skill of the convective parameters and indices to predict thunderstorms by means of probability distribution functions, probabilities of thunderstorms according to an index threshold, and skill scores like the Heidke Skill Score (HSS) that are based on categorical verification.
Abstract: . The preconvective environment on days with ordinary, widespread, and severe thunderstorms in Southwest Germany was investigated. Various thermodynamic and kinetic parameters calculated from radiosoundings at 12:00 UTC were verified against subsequent thunderstorm observations derived from SYNOP station data, radar data, and damage reports of a building insurance company. The skill of the convective parameters and indices to predict thunderstorms was evaluated by means of probability distribution functions, probabilities of thunderstorms according to an index threshold, and skill scores like the Heidke Skill Score (HSS) that are based on categorical verification. For the ordinary decision as to whether a thunderstorm day was expected or not, the best results were obtained with the original Lifted Index (80% prediction probability for LI≤−1.73; HSS=0.57 for LI≤1.76), the Showalter Index, and the modified K-Index. Considering days with isolated compared to widespread thunderstorms, the best performance is reached by the Deep Convective Index. For days with severe thunderstorms that caused damage due to hail, local storms or floods, the best prediction skill is found again for the Lifted Index and the Deep Convective Index, but also for the Potential Instability Index, the Delta-θe Index, and a version of the CAPE, where the lifting profile is determined by averaging over the lowest 100 hPa.

139 citations


Journal ArticleDOI
TL;DR: In this article, the potential value of parameters derived from radiosonde data or data from numerical atmospheric models for the forecasting of severe weather associated with convective storms is presented focusing on the possible value of parameter derived from soundings in the proximity of large hail, tornadoes (including tornadoes over water: waterspouts) and thunderstorms.

123 citations


Journal ArticleDOI
TL;DR: In this paper, forced-dissipative numerical simulations of the shallow-water equations in spherical geometry are presented to test the hypothesis that the zonal jets on Jupiter and Saturn result from energy injected by thunderstorms into the cloud layer.
Abstract: To test the hypothesis that the zonal jets on Jupiter and Saturn result from energy injected by thunderstorms into the cloud layer, forced-dissipative numerical simulations of the shallow-water equations in spherical geometry are presented. The forcing consists of sporadic, isolated circular mass pulses intended to represent thunderstorms; the damping, representing radiation, removes mass evenly from the layer. These results show that the deformation radius provides strong control over the behavior. At deformation radii 4000 km (0.06 Jupiter radii) become dominated by barotropically stable zonal jets with only weak vortices. The lack of midlatitude jets at a small deformation radii results from the suppression of the beta effect by column stretching; this effect has been previously documented i...

115 citations


Journal ArticleDOI
TL;DR: In this article, the mesoscale environment can indirectly control the cloud-to-ground (CG) lightning polarity of severe storms by directly affecting their structural, dynamical, and microphysical properties, which in turn directly control cloud electrification and ground flash polarity.
Abstract: In this study, it is hypothesized that the mesoscale environment can indirectly control the cloud-to-ground (CG) lightning polarity of severe storms by directly affecting their structural, dynamical, and microphysical properties, which in turn directly control cloud electrification and ground flash polarity. A more specific hypothesis, which has been supported by past observational and laboratory charging studies, suggests that broad, strong updrafts and associated large liquid water contents in severe storms lead to the generation of an inverted charge structure and enhanced +CG lightning production. The corollary is that environmental conditions favoring these kinematic and microphysical characteristics should support severe storms generating an anomalously high (>25%) percentage of +CG lightning (i.e., positive storms) while environmental conditions relatively less favorable should sustain storms characterized by a typical (≤25%) percentage of +CG lightning (i.e., negative storms). Forty-eight...

114 citations


Journal ArticleDOI
TL;DR: In this article, the authors simulated several processes acting below, in and above thunderstorms and in electrified shower clouds, which drive upward currents which close through the global atmospheric electric circuit.

111 citations


Journal ArticleDOI
TL;DR: In this paper, a multicellular thunderstorm west of Oklahoma City, Oklahoma, was probed as part of the Thunderstorm Electrification and Lightning Experiment field program, and four charge regions were inferred from a combination of LMA and EFM data.
Abstract: On 28–29 June 2004 a multicellular thunderstorm west of Oklahoma City, Oklahoma, was probed as part of the Thunderstorm Electrification and Lightning Experiment field program. This study makes use of radar observations from the Norman, Oklahoma, polarimetric Weather Surveillance Radar-1988 Doppler, three-dimensional lightning mapping data from the Oklahoma Lightning Mapping Array (LMA), and balloon-borne vector electric field meter (EFM) measurements. The storm had a low flash rate (30 flashes in 40 min). Four charge regions were inferred from a combination of LMA and EFM data. Lower positive charge near 4 km and midlevel negative charge from 4.5 to 6 km MSL (from 0° to −6.5°C) were generated in and adjacent to a vigorous updraft pulse. Further midlevel negative charge from 4.5 to 6 km MSL and upper positive charge from 6 to 8 km (from −6.5° to −19°C) were generated later in quantity sufficient to initiate lightning as the updraft decayed. A negative screening layer was present near the storm top...

Journal ArticleDOI
TL;DR: In this paper, a large-scale experiment was conducted in 2002, during which seven mobile towers were deployed in a linear array to obtain high-resolution data from outflows and two extreme events were captured: a rear-flank downdraft of a supercell, and a derecho.

Journal ArticleDOI
TL;DR: In this paper, a new three-dimensional probabilistic model for investigating the structure and development of bidirectional positive and negative lightning leaders is presented, which closely resembles structures observed by the LMA during intracloud discharges.
Abstract: [1] The direct comparison of lightning mapping observations by the New Mexico Tech Lightning Mapping Array (LMA) with realistic models of thundercloud electrical structures and lightning discharges represents a useful tool for studies of electrification mechanisms in thunderstorms, initiation and propagation mechanisms of different types of lightning discharges as well as for understanding of electrical and energetic effects of tropospheric thunderstorms on the upper regions of the Earth's atmosphere. This paper presents the formulation of a new three-dimensional probabilistic model for investigating the structure and development of bidirectional positive and negative lightning leaders. The results closely resemble structures observed by the LMA during intracloud discharges. The model represents a synthesis of the original dielectric breakdown model based on fractal approach proposed by Niemeyer et al. (1984) and the equipotential lightning channel hypothesis advanced by Kasemir (1960) and places special emphasis on obtaining self-consistent solutions preserving complete charge neutrality of the discharge trees at any stage of the simulation. A representative simulation run is compared to a typical intracloud discharge measured by LMA in a New Mexico thunderstorm on 31 July 1999. Following the conclusions from Coleman et al. (2003), the comparison of the model and observed discharges reveals that an adequate choice of the electrical structure of the model thundercloud permits the development of a model intracloud discharge reproducing principal features of the observed event including the initial vertical extension of the discharge between the main negative and upper positive charge regions of the thundercloud, and the subsequent horizontal propagations in these regions. Also consistent with observations (e.g., Coleman et al., 2003), negative and positive leaders mainly develop in the upper positive and main negative charge regions, respectively. For the particular model case presented in this paper, the total charge transfer, the vertical dipole moment and the average linear charge density associated with the development of bidirectional structure of leader channels are estimated to be 37.5 C, 122 C·km, and 0.5 mC/m, respectively, in good agreement with related data reported in the refereed literature. The model results also demonstrate that the bulk charge carried by the integral action of positive and negative leaders leads to a significant (up to 80%) reduction of the electric field values inside the thundercloud, significantly below the lightning initiation threshold.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss radar and lightning observations of two multicellular storms observed during the Severe Thunderstorm Electrification and Precipitation Study (STHES) and conclude that the 19 June 2000 storm produced mostly negative cloud-to-ground (CG) lightning, while the 22 June storm produced predominantly positive CG lightning.
Abstract: This study discusses radar and lightning observations of two multicellular storms observed during the Severe Thunderstorm Electrification and Precipitation Study. The Lightning Mapping Array data indicated that the charge structure of the 19 June 2000 storm was consistent with a normal polarity tripole, while the 22 June 2000 storm exhibited an overall inverted tripolar charge structure. The 19 June storm consisted of weaker convection and produced little to no hail and moderate total flash rates peaking between 80 and 120 min−1. The cells in the 22 June 2000 storm were much more vigorous, exhibited strong, broad updrafts, and produced large quantities of hail, as well as extraordinary total flash rates as high as 500 min−1. The National Lightning Detection Network (NLDN) indicated that the 19 June storm produced mostly negative cloud-to-ground (CG) lightning, while the 22 June storm produced predominantly positive CG lightning, peaking at 10 min−1 just after two cells merged. However, the Los Al...

Journal ArticleDOI
TL;DR: In this paper, the authors present examples of strong depolarization in oriented crystals from the data collected by the polarimetric prototype of TSPARQL, which is used for dual-polarization weather radar.
Abstract: Simultaneous transmission and reception of horizontally and vertically polarized waves is a preferable choice technique for dual-polarization weather radar. One of the consequences of such a choice is possible cross-coupling between orthogonally polarized waves. Cross-coupling depends on depolarizing properties of propagation media, and it is usually negligible in rain because the net mean canting angle of raindrops is close to zero. Snow crystals at the tops of thunderstorm clouds are often canted in the presence of strong electric fields and produce noticeable cross-coupling between radar signals at horizontal and vertical polarizations if both signals are transmitted and received simultaneously. As a result, peculiar-looking radial signatures of differential reflectivity ZDR and differential phase ΦDP are commonly observed in the crystal regions of thunderstorms. The paper presents examples of strong depolarization in oriented crystals from the data collected by the polarimetric prototype of t...

Journal ArticleDOI
01 Oct 2007-Icarus
TL;DR: Porco et al. as discussed by the authors reported on Cassini Imaging Science Subsystem (ISS) data correlated with Radio and Plasma Wave Science (RPWS) observations, which indicate lightning on Saturn.

Journal ArticleDOI
TL;DR: In this paper, a climatology of various parameters associated with severe convective storms has been constructed for Europe using the reanalysis data base from ERA-40 for the period 1971-2000 and calculating monthly means, variability range and extremes occurrence of fields such as convective available potential energy, convective inhibition energy, mid-tropospheric lapse rate and storm relative helicity for different layers.

Journal ArticleDOI
TL;DR: In this article, various configurations of the intermittent data assimilation procedure for Level-II Weather Surveillance Radar-1988 Doppler radar data are examined for the analysis and prediction of a tornadic thunderstorm that occurred on 8 May 2003 near Oklahoma City, Oklahoma.
Abstract: Various configurations of the intermittent data assimilation procedure for Level-II Weather Surveillance Radar-1988 Doppler radar data are examined for the analysis and prediction of a tornadic thunderstorm that occurred on 8 May 2003 near Oklahoma City, Oklahoma. Several tornadoes were produced by this thunderstorm, causing extensive damages in the south Oklahoma City area. Within the rapidly cycled assimilation system, the Advanced Regional Prediction System three-dimensional variational data assimilation (ARPS 3DVAR) is employed to analyze conventional and radar radial velocity data, while the ARPS complex cloud analysis procedure is used to analyze cloud and hydrometeor fields and adjust in-cloud temperature and moisture fields based on reflectivity observations and the preliminary analysis of the atmosphere. Forecasts for up to 2.5 h are made from the assimilated initial conditions. Two one-way nested grids at 9- and 3-km grid spacings are employed although the assimilation configuration experiments are conducted for the 3-km grid only while keeping the 9-km grid configuration the same. Data from the Oklahoma City radar are used. Different combinations of the assimilation frequency, in-cloud temperature adjustment schemes, and the length and coverage of the assimilation window are tested, and the results are discussed with respect to the length and evolution stage of the thunderstorm life cycle. It is found that even though the general assimilation method remains the same, the assimilation settings can significantly impact the results of assimilation and the subsequent forecast. For this case, a 1-h-long assimilation window covering the entire initial stage of the storm together with a 10-min spinup period before storm initiation works best. Assimilation frequency and in-cloud temperature adjustment scheme should be set carefully to add suitable amounts of potential energy during assimilation. High assimilation frequency does not necessarily lead to a better result because of the significant adjustment during the initial forecast period. When a short assimilation window is used, covering the later part of the initial stage of storm and using a high assimilation frequency and a temperature adjustment scheme based on latent heat release can quickly build up the storm and produce a reasonable analysis and forecast. The results also show that when the data from a single Doppler radar are assimilated with properly chosen assimilation configurations, the model is able to predict the evolution of the 8 May 2003 Oklahoma City tornadic thunderstorm well for up to 2.5 h. The implications of the choices of assimilation settings for real-time applications are discussed.

Journal ArticleDOI
TL;DR: In this paper, the 21 July 1998 European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model.
Abstract: [1] The 21 July 1998 thunderstorm observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NOx production which uses observed flash rates as input. Estimates of lightning NOx production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N yr−1. Chemical reactions were included in the model to evaluate the impact of lightning NOx on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NOx, maximizing at approximately 5 ppbv day−1 at 5.5 km. Between 8 and 10.5 km, lightning NOx causes decreased net ozone production.

Journal ArticleDOI
TL;DR: The DEMETER spacecraft detects short bursts of lightning-induced electron precipitation (LEP) simultaneously with newly-injected upgoing whistlers, and sometimes also with once-reflected (from conjugate hemisphere) whistlers as mentioned in this paper.
Abstract: [1] DEMETER spacecraft detects short bursts of lightning-induced electron precipitation (LEP) simultaneously with newly-injected upgoing whistlers, and sometimes also with once-reflected (from conjugate hemisphere) whistlers. For the first time causative lightning discharges are definitively geo-located for some LEP bursts aboard a satellite. The LEP bursts occur within <1 s of the causative lightning and consist of 100–300 keV electrons. First in-situ observations of large regions of enhanced background precipitation are presented. The regions are apparently produced and maintained by high rate of lightning within a localized thunderstorm.

Journal ArticleDOI
TL;DR: In this article, two low-light cameras near Marfa, Texas, recorded a gigantic jet over northern Mexico on 13 May 2005 at approximately 0423:50 UTC, and the likely parent storm was a high-precipitation supercell cluster containing a persistent mesocyclone, with radar echo tops of at least 17 km.
Abstract: [1] Two low-light cameras near Marfa, Texas, recorded a gigantic jet over northern Mexico on 13 May 2005 at approximately 0423:50 UTC. Assuming that the farthest of two candidate storm systems was its source, the bright lower channel ended in a fork at around 50–59 km height with the very dim upper branches extended to 69–80 km altitude. During the time window containing the jet, extremely low frequency magnetic field recordings show that there was no fast charge moment change larger than 50 coulomb times kilometers (C km) but there was a larger and slower charge moment change of 520 C km over 70 ms. The likely parent thunderstorm was a high-precipitation supercell cluster containing a persistent mesocyclone, with radar echo tops of at least 17 km. However, photogrammetric analysis suggests that the gigantic jet occurred over the forward flank downdraft region with echo tops of 14 km. This part of the supercell may have had an inverted-polarity charge configuration as evidenced by positive cloud-to-ground lightning flashes (+CG) dominating over negative flashes (−CG), while −CGs occurred under the downwind anvil. Four minutes before the gigantic jet, −CG activity practically ceased in this area, while +CG rates increased, culminating during the 20 s leading up to the gigantic jet with four National Lightning Detection Network–detected +CGs. A relative lull in lightning activity of both polarities was observed for up to 1.5 min after the gigantic jet. The maturing storm subsequently produced 30 sprites between 0454 and 0820 UTC, some associated with extremely large impulse charge moment change values.

Journal ArticleDOI
TL;DR: In this article, it was shown that total lightning mapping, along with radar and National Lightning Detection Network (NLDN) cloud-to-ground lightning data, can be used to diagnose the severity of a thunderstorm.
Abstract: It is shown that total lightning mapping, along with radar and National Lightning Detection Network (NLDN) cloud-to-ground lightning data, can be used to diagnose the severity of a thunderstorm. Analysis of supercells, some of which were tornadic, on 13 October 2001 over Dallas–Fort Worth, Texas, shows that Lightning Detection and Ranging (LDAR II) lightning source heights (quartile, median, and 95th percentile heights) increased as the storms intensified. Most of the total (cloud to ground and intracloud) lightning occurred where reflectivity cores extended upward, within regions of strong reflectivity gradient rather than in reflectivity cores. A total lightning hole was associated with an intense, nontornadic supercell on 6 April 2003. None of the supercells on 13 October 2001 exhibited a lightning hole. During tornadogenesis, the radar and LDAR II data indicated updraft weakening. The height of the 30-dBZ radar top began to descend approximately 10 min (2 volume scans) before tornado touchdow...

Journal ArticleDOI
TL;DR: Chen et al. as discussed by the authors proposed a nonparametric deterministic-stochastic hybrid (NDESH) model for characterizing and simulating nonstationary thunderstorm downburst wind fields, and two sets of full-scale wind speed records were fitted in this model.

Journal ArticleDOI
TL;DR: In this article, the authors used a three-dimensional convective cloud model to simulate the 10 July 1996 Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone-Deep Convection experiment storm.
Abstract: [1] By using a three-dimensional convective cloud model to simulate the 10 July 1996, Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone-Deep Convection experiment storm, we investigate the fate of formaldehyde (CH2O), formic acid (HCOOH), hydrogen peroxide (H2O2), and methyl hydrogen peroxide (CH3OOH) in an isolated thunderstorm. CH2O, H2O2, and CH3OOH are important HOx radical and ozone (O3) precursors in the upper troposphere. Thus, determining their source strength to the upper troposphere is important for estimating O3 production. The model simulates O3-NOx-CH4 chemistry (no nonmethane hydrocarbon chemistry) which is affected by the cloud microphysics and production of NOx by lightning. The retention of the soluble species within ice, snow, and hail during drop freezing results in less transport of the species to the upper troposphere than when the species is degassed during drop-freezing processes. Aqueous-phase chemistry is found to be inadequate in producing sufficient quantities of HCOOH so that HCOOH could serve as a reliable indicator of cloud-processed air. The production of nitrogen oxides by lightning has little to no effect on convective outflow mixing ratios of CH2O, H2O2, and CH3OOH within 100 km of the convective cores. Thus, it is unlikely that lightning affects concentrations of HOx precursors near active convection. Scavenging of CH2O and H2O2 significantly affects their concentrations in the convective outflow, although H2O2 mixing ratios were still similar to CH3OOH indicating that both peroxides can contribute equally to O3 production downwind of convection.

Journal ArticleDOI
TL;DR: In this article, a point process framework is used for analyses of cloud-to-ground (CG) lightning observations from the National Lightning Detection Network (NLDN) and discharge observations from 11 U.S. Geological Survey (USGS) stream gauging stations.
Abstract: The climatology of thunderstorms and flash floods in the Baltimore, Maryland, metropolitan region is examined through analyses of cloud-to-ground (CG) lightning observations from the National Lightning Detection Network (NLDN) and discharge observations from 11 U.S. Geological Survey (USGS) stream gauging stations. A point process framework is used for analyses of CG lightning strikes and the occurrences of flash floods. Analyses of lightning strikes as a space–time point process focus on the mean intensity function, from which the seasonal, diurnal, and spatial variation in mean lightning frequency are examined. Important elements of the spatial variation of mean lightning frequency are 1) initiation of thunderstorms along the Blue Ridge, 2) large variability of lightning frequency around the urban cores of Baltimore and Washington D.C., and 3) decreased lightning frequency over the Chesapeake Bay and Atlantic Ocean. Lightning frequency has a sharp seasonal maximum around mid-July, and the diurn...

Journal ArticleDOI
TL;DR: In this paper, in situ measurements of NO, NOy, CO, and O3 mixing ratios and the J(NO2) photolysis rate were carried out in the anvil outflow of thunderstorms over southern Brazil.
Abstract: . During the TROCCINOX field experiments in February–March 2004 and February 2005, airborne in situ measurements of NO, NOy, CO, and O3 mixing ratios and the J(NO2) photolysis rate were carried out in the anvil outflow of thunderstorms over southern Brazil. Both tropical and subtropical thunderstorms were investigated, depending on the location of the South Atlantic convergence zone. Tropical air masses were discriminated from subtropical ones according to the higher equivalent potential temperature (Θe) in the lower and mid troposphere, the higher CO mixing ratio in the mid troposphere, and the lower wind velocity in the upper troposphere within the Bolivian High (north of the subtropical jet stream). During thunderstorm anvil penetrations, typically at 20–40 km horizontal scales, NOx mixing ratios were distinctly enhanced and the absolute mixing ratios varied between 0.2–1.6 nmol mol−1 on average. This enhancement was mainly attributed to NOx production by lightning and partly due to upward transport from the NOx-richer boundary layer. In addition, CO mixing ratios were occasionally enhanced, indicating upward transport from the boundary layer. For the first time, the composition of the anvil outflow from a large, long-lived mesoscale convective system (MCS) advected from northern Argentina and Uruguay was investigated in more detail. Over a horizontal scale of about 400 km, NOx, CO and O3 absolute mixing ratios were significantly enhanced in these air masses in the range of 0.6–1.1, 110–140 and 60–70 nmol mol−1, respectively. Analyses from trace gas correlations and a Lagrangian particle dispersion model indicate that polluted air masses, probably from the Buenos Aires urban area and from biomass burning regions, were uplifted by the MCS. Ozone was distinctly enhanced in the aged MCS outflow, due to photochemical production and entrainment of O3-rich air masses from the upper troposphere – lower stratosphere region. The aged MCS outflow was transported to the north, ascended and circulated, driven by the Bolivian High over the Amazon basin. In the observed case, the O3-rich MCS outflow remained over the continent and did not contribute to the South Atlantic ozone maximum.

Journal ArticleDOI
TL;DR: In this article, an observational study of the tornado outbreak that took place on the 7 September 2005 in the Llobregat delta river, affecting a densely populated and urbanised area and the Barcelona International airport (NE Spain).
Abstract: . This paper presents an observational study of the tornado outbreak that took place on the 7 September 2005 in the Llobregat delta river, affecting a densely populated and urbanised area and the Barcelona International airport (NE Spain). The site survey confirmed at least five short-lived tornadoes. Four of them were weak (F0, F1) and the other one was significant (F2 on the Fujita scale). They started mostly as waterspouts and moved later inland causing extensive damage estimated in 9 million Euros, three injured people but fortunately no fatalities. Large scale forcing was provided by upper level diffluence and low level warm air advection. Satellite and weather radar images revealed the development of the cells that spawned the waterspouts along a mesoscale convergence line in a highly sheared and relatively low buoyant environment. Further analysis indicated characteristics that could be attributed indistinctively to non-supercell or to mini-supercell thunderstorms.

Journal ArticleDOI
TL;DR: In this paper, the authors used the Heidke skill score (HEIDKE) to determine the best threshold for predicting the likelihood of a thunderstorm in a slightly unstable environment with a high positive VIMFC.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the thermodynamic structure on top of a numerically simulated severe storm to explain the satellite observed plume formation above thunderstorm anvils and the same mechanism also explains the formation of jumping cirrus observed by Fujita on board of a research aircraft.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the presence and motion of organized convective systems in the east-central United States and found that convective episodes were most frequent during high-instability, low-shear months of summer, which dominate the year-round statistics.
Abstract: Nine years of composited radar data are investigated to assess the presence of organized convective episodes in the east-central United States. In the eastern United States, the afternoon maximum in thunderstorms is ubiquitous over land. However, after removing this principal diurnal peak from the radar data, the presence and motion of organized convective systems becomes apparent in both temporally averaged fields and in the statistics of convective episodes identified by an objective algorithm. Convective echoes are diurnally maximized over the Appalachian chain, and are repeatedly observed to move toward the east. Partly as a result of this, the daily maximum in storms is delayed over the Piedmont and coastal plain relative to the Appalachian Mountains and the Atlantic coast. During the 9 yr studied, the objective algorithm identified 2128 total convective episodes (236 yr 1 ), with several recurring behaviors. Many systems developed over the elevated terrain during the afternoon and moved eastward, often to the coastline and even offshore. In addition, numerous systems formed to the west of the Appalachian Mountains and moved into and across the eastern U.S. study domain. In particular, many nocturnal convective systems from the central United States entered the western side of the study domain, frequently arriving at the eastern mountains around the next day’s afternoon maximum in storm frequency. A fraction of such well-timed systems succeeded in crossing the Appalachians and continuing across the Piedmont and coastal plain. Convective episodes were most frequent during the high-instability, low-shear months of summer, which dominate the year-round statistics. Even so, an important result is that the episodes still occurred almost exclusively in above-average vertical wind shear. Despite the overall dominance of the diurnal cycle, the data show that adequate shear in the region frequently leads to long-lived convective episodes with mesoscale organization.