scispace - formally typeset
Search or ask a question
Topic

Tick

About: Tick is a research topic. Over the lifetime, 10275 publications have been published within this topic receiving 258906 citations. The topic is also known as: Ixodoidea & ticks.


Papers
More filters
Journal ArticleDOI
TL;DR: Ticks and tick-borne diseases affect animal and human health worldwide and are the cause of significant economic losses and although some estimates are given, there is a lack of reliable data.
Abstract: Ticks and tick-borne diseases affect animal and human health worldwide and are the cause of significant economic losses. Approximately 10% of the currently known 867 tick species act as vectors of a broad range of pathogens of domestic animals and humans and are also responsible for damage directly due to their feeding behaviour. The most important tick species and the effects they cause are listed. The impact on the global economy is considered to be high and although some estimates are given, there is a lack of reliable data. The impact of ticks and tick-borne diseases on animal production and public health and their control are discussed.

1,623 citations

Journal ArticleDOI
TL;DR: Methods for the detection and isolation of bacteria from ticks are described and advice is given on how tick bites may be prevented and how clinicians should deal with patients who have been bitten by ticks.
Abstract: Ticks are currently considered to be second only to mosquitoes as vectors of human infectious diseases in the world. Each tick species has preferred environmental conditions and biotopes that determine the geographic distribution of the ticks and, consequently, the risk areas for tickborne diseases. This is particularly the case when ticks are vectors and reservoirs of the pathogens. Since the identification of Borrelia burgdorferi as the agent of Lyme disease in 1982, 15 ixodid-borne bacterial pathogens have been described throughout the world, including 8 rickettsiae, 3 ehrlichiae, and 4 species of the Borrelia burgdorferi complex. This article reviews and illustrate various aspects of the biology of ticks and the tickborne bacterial diseases (rickettsioses, ehrlichioses, Lyme disease, relapsing fever borrelioses, tularemia, Q fever), particularly those regarded as emerging diseases. Methods are described for the detection and isolation of bacteria from ticks and advice is given on how tick bites may be prevented and how clinicians should deal with patients who have been bitten by ticks.

1,065 citations

Journal ArticleDOI
TL;DR: Crimean-Congo haemorrhagic fever (CCHF) is an often fatal viral infection described in about 30 countries, and it has the most extensive geographic distribution of the medically important tickborne viral diseases, closely approximating the known global distribution of Hyalomma spp ticks.
Abstract: Crimean-Congo haemorrhagic fever (CCHF) is an often fatal viral infection described in about 30 countries, and it has the most extensive geographic distribution of the medically important tickborne viral diseases, closely approximating the known global distribution of Hyalomma spp ticks. Human beings become infected through tick bites, by crushing infected ticks, after contact with a patient with CCHF during the acute phase of infection, or by contact with blood or tissues from viraemic livestock. Clinical features commonly show a dramatic progression characterised by haemorrhage, myalgia, and fever. The levels of liver enzymes, creatinine phosphokinase, and lactate dehydrogenase are raised, and bleeding markers are prolonged. Infection of the endothelium has a major pathogenic role. Besides direct infection of the endothelium, indirect damage by viral factors or virus-mediated host-derived soluble factors that cause endothelial activations and dysfunction are thought to occur. In diagnosis, enzyme-linked immunoassay and real-time reverse transcriptase PCR are used. Early diagnosis is critical for patient therapy and prevention of potential nosocomial infections. Supportive therapy is the most essential part of case management. Recent studies suggest that ribavirin is effective against CCHF, although definitive studies are not available. Health-care workers have a serious risk of infection, particularly during care of patients with haemorrhages from the nose, mouth, gums, vagina, and injection sites. Simple barrier precautions have been reported to be effective.

982 citations

Journal ArticleDOI
TL;DR: The history, epidemiology, ecology, clinical features, pathogenesis, diagnosis, and treatment of CCHF are reviewed, and issues related to its possible use as a bioterrorism agent are discussed.

931 citations

Journal ArticleDOI
TL;DR: It was only in 1967, when Soviet workers first used the generally accepted newborn white mouse inoculation technique for CCHF virus isolation and study, that the etiologic agent could be characterized antigenically, physiochemically, and morphologically.
Abstract: Crimean-Congo hemorrhagic fever (CCHF) came to modern medical attention in 1944–1945, when about 200 Soviet military personnel were infected while assisting peasants in war-devastated Crimea (Ukrainian SSR). Subsequent epidemics occurred in Astrakhan (1953–1968) and Rostov Oblasts (1963–1971) of USSR and in Bulgaria (1953–1973). There have been numerous lesser outbreaks in southern USSR and, in 1976, outbreaks in Pakistan. However, it was only in 1967, when Soviet workers first used the generally accepted newborn white mouse (NWM) inoculation technique for CCHF virus isolation and study, that the etiologic agent could be characterized antigenically, physiochemically, and morphologically. Collaboration in 1968 between the Soviet and American experts M. P. Chumakov and Jordi Casals demonstrated the serologically identical properties of virus strains from human CCHF patients and corpses, lower mammals, and ticks from Asian and European areas of the USSR and from Bulgaria, Congo (Zaire), Nigeria, and Pakistan. These results, confirmed and broadened in subsequent studies, enabled serological and other research tools to be developed for producing identifiable antibodies and antigens required in experimental procedures and seroepidemiological surveys and obtaining scientific evidence to demonstrate vector and reservoir species and virus dynamics in nature. CCHF virus, a member (without generic assignment) of the family Bunyaviridae, is the prototype of the CCHF serogroup, which also includes Hazara virus (from Ixodes redikorzevi parasitizing alpine voles in Pakistan). CCHF virus is enzootic in the Palearctic, Oriental, and Ethiopian Faunal Regions, chiefly in steppe, savanna, semidesert, and foothill biotopes where 1 or 2 Hyalomma species are the predominant ticks parasitizing domestic and wild animals. Presence of the virus has been demonstrated by isolations from humans, other mammals, and/or ticks, or by seroepidemiological survey results, in western and southern India, Pakistan, Afghanistan, Iran, Soviet Middle Asia (Turkmen, Uzbek, Kazakh, Kirgiz, and Tadzhik SSR), Transcaucasia (Armenian and Azerbaijan SSR), European USSR (Ukrainian and Moldavian SSR, Kalmyk and Daghestan ASSR, Astrakhan and Rostov Oblasts, and Krasnodar and Stavropol Regions of RSFSR), Bulgaria, Yugoslavia, Greece, Hungary, France, Senegal, Nigeria, Central African Empire, Zaire, Uganda, Kenya, Ethiopia, Tanzania, and Egypt. The ecologically atypical CCHF foci in Moldavian deciduous forest habitats of Ixodes ritinus and Dermatentor and Rhipicephalus species may represent a spillover phenomenon associated with environmental changes created by humans. CCHF virus is a true tick-associated arbovirus; it survives transstadially (from larva to nymph to adult) and interseasonally in several tick species and is transmitted transovarially to the F1 generation (in some cases to F2) in Hyalomma m. marginatum, H. marginatum rufipes, Dermacentor marginatus , and Rhipicephalus rossicus . Twenty-five tick species and subspecies have been reported to be CCHF virus reservoirs/vectors (the single record from an argasid, the birdparasitizing Argas persicus, remains to be confirmed). One-host ticks, Boophilus annulatus, B. microplus, B. decoloratus (and probably B. geigyi ), appear to maintain intense virus interaction for many weeks or months between several tick species infesting artiodactyls (especially cattle). The 2-host vectors are Hyalomma m. marginatum, H. mmginatum turanicum and H. marginatum rufipes (and probably H. marginatum isaaci ); they feed as immatures on birds, hares, or hedgehogs and, as adults, chiefly on artiodactyls (often also on humans). Other 2-host vectors, H. anatolicum anatolicum, H. detritum , and Rhipicephalus bursa , feed both as immatures and adults on artiodactyls. The H. marginatum complex, and H. a. anatolicum , are especially important in causing epidemics and outbreaks of human CCHF owing to their great numbers during certain periods and to their aggressiveness in seeking human hosts. Others, including 13 species of 3-host ticks [ Haemaphysalis punctata, Amblyomma variegatum, Dermacentor (2 spp.), Hyalomma (5 spp.), and Rhipicephalus (4 spp.)], which generally seek human hosts less aggressively than the cited hyalommas, serve chiefly to maintain enzootic foci of CCHF virus circulation between ticks and wild and domestic mammals. Ground-feeding birds are often hosts of CCHF virus-infected ticks but birds apparently do not become viremic; the epidemiological role of these birds is to support populations of certain vector species and to disseminate these species intracontinentally and/or intercontinentally. CCHF epidemics have developed on a background of favorable climatic factors and environmental changes beneficial for survival of large numbers of hyalommas and of the hosts of both their immature and adult stages. The environmental changes have been wartime neglect of agricultural lands, introduction of susceptible military personnel or new settlers into infected foci, widescale collectivization of agriculture, changing pasture patterns, converting floodplains and marshy deltas to farmland and pastures, flood control, etc. Unusually severe winter-spring weather, resulting in decimation of Hyalomma populations and also of hosts of immature stages, appears to have been largely responsible for virus circulation to revert from epizootic (epidemic) to enzootic intensity. Humans become infected when bitten by infected ticks, or when crushing these ticks in their bare hands or shearing tick-infested sheep. Household and nosocomial cases resulting from contamination by bloody discharges from CCHF patients have been especially numerous and severe, often with great mortality, in villages and hospitals where the disease was unrecognized. Other cases have occurred from laboratory accidents and from handling infected animal carcasses. Mild, moderate, and severe disease courses are described. A certain number of human infections may be clinically inapparent. Mortality rates in CCHF patients have ranged from 15 to 40% or more. Despite the absence of specific drugs for treating CCHF, the Leshchinskaya regimen of hospital care has resulted in appreciable reduction in mortality rates. There are no scientific data to indicate that the virus is less virulent in Africa than in Eurasia. An apparently effective vaccine has been developed to prevent infections in persons in high-risk situations. Various measures applied to prevent human illness have had mixed success. The sensitivity of serological tests for CCHF antibodies needs to be improved to obtain more reliable survey results and to determine whether there are significant differences between CCHF virus strains. The fluorescent antibody technique (FAT) is useful for determining the presence of antibodies to the virus in vertebrate tissues and in ticks (but the dynamics of the virus in ticks has not been investigated). The indirect FAT is an important candidate for research in relation to epidemiological surveys. Most CCHF strains yield no agglutinating antigens (unlike all other arboviruses causing significant human disease, except Colorado tick fever virus); CCHF virus also replicates poorly or not at all in most cell cultures and no visible cytopathogenic effect has been described. Addendum . In 1978, while this manuscript was in press, CCHF isolates were reported from Hyalomma dromedarii in Turkmenia and Rhipicephalus appendiculatus in Uganda. Thus, 27 tick taxa have been associated with CCHF virus.

877 citations


Network Information
Related Topics (5)
Disease reservoir
4K papers, 254.9K citations
88% related
Borrelia burgdorferi
7.9K papers, 295.5K citations
86% related
Aedes aegypti
8.4K papers, 225.7K citations
85% related
Seroprevalence
15.7K papers, 279.9K citations
83% related
Toxoplasma gondii
11.3K papers, 307.5K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023596
20221,303
2021652
2020607
2019496
2018537