Topic
Tilt (camera)
About: Tilt (camera) is a research topic. Over the lifetime, 2611 publications have been published within this topic receiving 22266 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: The system successfully extracts moving edges from dynamic images even when the pan/tilt angles between successive frames are as large as 3.5m, and the use of morphological filtering of motion images is explored to desensitize the detection algorithm to inaccuracies in background compensation.
Abstract: This paper describes a method for real-time motion detection using an active camera mounted on a pan/tilt platform. Image mapping is used to align images of different viewpoints so that static camera motion detection can be applied. In the presence of camera position noise, the image mapping is inexact and compensation techniques fail. The use of morphological filtering of motion images is explored to desensitize the detection algorithm to inaccuracies in background compensation, Two motion detection techniques are examined, and experiments to verify the methods are presented. The system successfully extracts moving edges from dynamic images even when the pan/tilt angles between successive frames are as large as 3. >
398 citations
Patent•
[...]
09 Aug 1989
TL;DR: In this article, a surveillance camera system comprises a spherical housing that has a partially transparent lower, hemispherically shaped gold coated dome with a geometric center and a camera mount is mounted in the housing for panning movements about a vertical pan axis and tilting movement about a horizontal tilt axis.
Abstract: A surveillance camera system comprises a spherical housing that has a partially transparent lower, hemispherically shaped gold coated dome with a geometric center. A camera mount is mounted in the housing for panning movements about a vertical pan axis and tilting movement about a horizontal tilt axis. A video camera is mounted to the camera mount and electric motors are mounted for panning and tilting the mount and camera. A computer and control circuit is mounted to the camera mount and coupled to actuate the electric motors to orient the camera and to actuate the camera zoom and focus as well as to enhance the camera's video image with descriptive word captions. The computer is programmed for automatic or manual operation of the system. A rotary electric connector is mounted to the housing and connects the on board computer with a joystick and control unit for issuing instructions to the computer and connects the camera to an ancillary video display.
315 citations
[...]
TL;DR: The data show that compensatory eye, head, and body movements stabilize gaze during straight walking, while orienting mechanisms direct the eyes, head and body to tilts of the GIA in space during turning.
Abstract: Body, head, and eye movements were measured in five subjects during straight walking and while turning corners. The purpose was to determine how well the head and eyes followed the linear trajectory of the body in space and whether head orientation followed changes in the gravito-inertial acceleration vector (GIA). Head and body movements were measured with a video-based motion analysis system and horizontal, vertical, and torsional eye movements with video-oculography. During straight walking, there was lateral body motion at the stride frequency, which was at half the frequency of stepping. The GIA oscillated about the direction of heading, according to the acceleration and deceleration associated with heel strike and toe flexion, and the body yawed in concert with stepping. Despite the linear and rotatory motions of the head and body, the head pointed along the forward motion of the body during straight walking. The head pitch/roll component appeared to compensate for vertical and horizontal acceleration of the head rather than orienting to the tilt of the GIA or anticipating it. When turning corners, subjects walked on a 50-cm radius over two steps or on a 200-cm radius in five to seven steps. Maximum centripetal accelerations in sharp turns were ca.0.4 g, which tilted the GIA ca.21 degrees with regard to the heading. This was anticipated by a roll tilt of the head of up to 8 degrees. The eyes rolled 1-1.5 degrees and moved down into the direction of linear acceleration during the tilts of the GIA. Yaw head deviations moved smoothly through the turn, anticipating the shift in lateral body trajectory by as much as 25 degrees. The trunk did not anticipate the change in trajectory. Thus, in contrast to straight walking, the tilt axes of the head and the GIA tended to align during turns. Gaze was stable in space during the slow phases and jumped forward in saccades along the trajectory, leading it by larger angles when the angular velocity of turning was greater. The anticipatory roll head movements during turning are likely to be utilized to overcome inertial forces that would destabilize balance during turning. The data show that compensatory eye, head, and body movements stabilize gaze during straight walking, while orienting mechanisms direct the eyes, head, and body to tilts of the GIA in space during turning.
313 citations
[...]
TL;DR: Direct featureless methods for estimating the eight parameters of an "exact" projective (homographic) coordinate transformation to register pairs of images, together with the application of seamlessly combining a plurality of images of the same scene, resulting in a single image (or new image sequence) of greater resolution or spatial extent.
Abstract: We present direct featureless methods for estimating the eight parameters of an "exact" projective (homographic) coordinate transformation to register pairs of images, together with the application of seamlessly combining a plurality of images of the same scene, resulting in a single image (or new image sequence) of greater resolution or spatial extent. The approach is "exact" for two cases of static scenes: (1) images taken from the same location of an arbitrary three-dimensional (3-D) scene, with a camera that is free to pan, tilt, rotate about its optical axis, and zoom, or (2) images of a flat scene taken from arbitrary locations. The featureless projective approach generalizes interframe camera motion estimation methods that have previously used a camera model (which lacks the degrees of freedom to "exactly" characterize such phenomena as camera pan and tilt) and/or which have relied upon finding points of correspondence between the image frames. The featureless projective approach, which operates directly on the image pixels, is shown to be superior in accuracy and the ability to enhance the resolution. The proposed methods work well on image data collected from both good-quality and poor-quality video under a wide variety of conditions (sunny, cloudy, day, night). These new fully automatic methods are also shown to be robust to deviations from the assumptions of static scene and no parallax.
240 citations
Patent•
[...]
04 May 2009
TL;DR: In this article, a multi-object processing camera captures a wide-angle field of view in high resolution and a processing circuit executes a plurality of software tasks on the regions extracted from the view.
Abstract: Methods and systems of transmitting a plurality of views from a video camera are disclosed. A multi object processing camera captures a wide-angle field of view in high resolution and a processing circuit executes a plurality of software tasks on a plurality of regions extracted from the wide-angle view. Multiple objects can be processed by the camera to detect various events, and the results of the processing transmitted to a base station. The camera removes the need for mechanical pan, tilt, and zoom apparatus by correcting distortions in the electronic image introduced by the wide-angle optical system and image sensor to electronically emulate the pan, tilt, and zoom movement.
197 citations