Topic
Time delay neural network
About: Time delay neural network is a research topic. Over the lifetime, 20893 publications have been published within this topic receiving 503205 citations. The topic is also known as: TDNN.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.
Abstract: From the Publisher:
This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.
19,056 citations
[...]
TL;DR: The chapter discusses two important directions of research to improve learning algorithms: the dynamic node generation, which is used by the cascade correlation algorithm; and designing learning algorithms where the choice of parameters is not an issue.
Abstract: Publisher Summary This chapter provides an account of different neural network architectures for pattern recognition. A neural network consists of several simple processing elements called neurons. Each neuron is connected to some other neurons and possibly to the input nodes. Neural networks provide a simple computing paradigm to perform complex recognition tasks in real time. The chapter categorizes neural networks into three types: single-layer networks, multilayer feedforward networks, and feedback networks. It discusses the gradient descent and the relaxation method as the two underlying mathematical themes for deriving learning algorithms. A lot of research activity is centered on learning algorithms because of their fundamental importance in neural networks. The chapter discusses two important directions of research to improve learning algorithms: the dynamic node generation, which is used by the cascade correlation algorithm; and designing learning algorithms where the choice of parameters is not an issue. It closes with the discussion of performance and implementation issues.
13,033 citations
[...]
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.
Abstract: It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these conventional implementations, this paper proposes a new learning algorithm called e xtreme l earning m achine (ELM) for s ingle-hidden l ayer f eedforward neural n etworks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning speed. The experimental results based on a few artificial and real benchmark function approximation and classification problems including very large complex applications show that the new algorithm can produce good generalization performance in most cases and can learn thousands of times faster than conventional popular learning algorithms for feedforward neural networks. 1
8,861 citations
[...]
TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Abstract: Most current speech recognition systems use hidden Markov models (HMMs) to deal with the temporal variability of speech and Gaussian mixture models (GMMs) to determine how well each state of each HMM fits a frame or a short window of frames of coefficients that represents the acoustic input. An alternative way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition benchmarks, sometimes by a large margin. This article provides an overview of this progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
7,700 citations
Book•
[...]
TL;DR: This book, by the authors of the Neural Network Toolbox for MATLAB, provides a clear and detailed coverage of fundamental neural network architectures and learning rules, as well as methods for training them and their applications to practical problems.
Abstract: This book, by the authors of the Neural Network Toolbox for MATLAB, provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems. Features Extensive coverage of training methods for both feedforward networks (including multilayer and radial basis networks) and recurrent networks. In addition to conjugate gradient and Levenberg-Marquardt variations of the backpropagation algorithm, the text also covers Bayesian regularization and early stopping, which ensure the generalization ability of trained networks. Associative and competitive networks, including feature maps and learning vector quantization, are explained with simple building blocks. A chapter of practical training tips for function approximation, pattern recognition, clustering and prediction, along with five chapters presenting detailed real-world case studies. Detailed examples and numerous solved problems. Slides and comprehensive demonstration software can be downloaded from hagan.okstate.edu/nnd.html.
6,463 citations