scispace - formally typeset
Search or ask a question
Topic

Time–frequency analysis

About: Time–frequency analysis is a research topic. Over the lifetime, 5407 publications have been published within this topic receiving 104346 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new feature extraction step that combines the classical wavelet packet decomposition energy distribution technique and a feature extraction technique based on the selection of the most impulsive frequency bands is presented.

99 citations

Journal ArticleDOI
TL;DR: This work investigates a low complexity linear minimum mean square error receiver which exploits sparsity and quasi-banded structure of matrices involved in the demodulation process which results in a log-linear order of complexity without any performance degradation of BER.
Abstract: Orthogonal time frequency space modulation is a two dimensional (2D) delay-Doppler domain waveform. It uses inverse symplectic Fourier transform (ISFFT) to spread the signal in time-frequency domain. To extract diversity gain from 2D spreaded signal, advanced receivers are required. In this work, we investigate a low complexity linear minimum mean square error receiver which exploits sparsity and quasi-banded structure of matrices involved in the demodulation process which results in a log-linear order of complexity without any performance degradation of BER.

98 citations

Journal ArticleDOI
TL;DR: Application of the VMD on field data demonstrates that instantaneous spectrum after VMD targets the thickness variation in the coal seam more sensitively than the conventional tools and highlights the fine details that might escape unnoticed.
Abstract: Seismic time–frequency analysis methods play an important role in seismic interpretation for its superiority in significantly revealing the frequency content of a seismic signal changes with time variation. Variational-mode decomposition (VMD) is a newly developed methodology for decomposition on adaptive and quasi-orthogonal signal and can decompose a seismic signal into a number of band-limited quasi-orthogonal intrinsic mode functions (IMFs). Each mode is an AM–FM signal with the narrow-band property and nonnegative smoothly varying instantaneous frequencies. Analysis on synthetic and real data shows that this method is more robust to noise and has stronger local decomposition ability than the empirical mode decomposition (EMD)-based methods. Comparing with the short-time Fourier transform (STFT) or wavelet transform (WT), instantaneous spectrum after VMD promises higher spectral and spatial resolution. Application of the VMD on field data demonstrates that instantaneous spectrum after VMD targets the thickness variation in the coal seam more sensitively than the conventional tools and highlights the fine details that might escape unnoticed. The technique is more promising for seismic signal processing and interpretation.

98 citations

Journal ArticleDOI
TL;DR: The reassignment method is combined with the LPFT and the robust LPFT to improve the concentration of the signal representation in the time-frequency domain and has its superiority in obtaining improved SNRs, which can be supported by theoretical analysis and computer simulations.

97 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
87% related
Artificial neural network
207K papers, 4.5M citations
85% related
Image segmentation
79.6K papers, 1.8M citations
83% related
Wireless
133.4K papers, 1.9M citations
82% related
Convolutional neural network
74.7K papers, 2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023164
2022338
2021253
2020229
2019261
2018320