scispace - formally typeset

Topic

Time perception

About: Time perception is a(n) research topic. Over the lifetime, 1918 publication(s) have been published within this topic receiving 87020 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: The authors show that the perception of time is malleable, and social goals change in both younger and older people when time constraints are imposed and suggest potential implications for multiple subdisciplines and research interests.
Abstract: Socioemotional selectivity theory claims that the perception of time plays a fundamental role in the selection and pursuit of social goals. According to the theory, social motives fall into 1 of 2 general categories--those related to the acquisition of knowledge and those related to the regulation of emotion. When time is perceived as open-ended, knowledge-related goals are prioritized. In contrast, when time is perceived as limited, emotional goals assume primacy. The inextricable association between time left in life and chronological age ensures age-related differences in social goals. Nonetheless, the authors show that the perception of time is malleable, and social goals change in both younger and older people when time constraints are imposed. The authors argue that time perception is integral to human motivation and suggest potential implications for multiple subdisciplines and research interests in social, developmental, cultural, cognitive, and clinical psychology.

3,582 citations

Journal ArticleDOI
TL;DR: The results suggest that the domain of the cerebellar timing process is not limited to the motor system, but is employed by other perceptual and cognitive systems when temporally predictive computations are needed.
Abstract: This study investigated the effects of different types of neurological deficits on timing functions. The performance of Parkinson, cerebellar, cortical, and peripheral neuropathy patients was compared to age-matched control subjects on two separate measures of timing functions. The first task involved the production of timed intervals in which the subjects attempted to maintain a simple rhythm. The second task measured the subjects' perceptual ability to discriminate between small differences in the duration of two intervals. The primacy of the cerebellum in timing functions was demonstrated by the finding that these were the only patients who showed a deficit in both the production and perception of timing tasks. The cerebellar group was found to have increased variability in performing rhythmic tapping and they were less accurate than the other groups in making perceptual discriminations regarding small differences in duration. Critically, this perceptual deficit appears to be specific to the perception of time since the cerebellar patients were unaffected in a control task measuring the perception of loudness. It is argued that the operation of a timing mechanism can be conceptualized as an isolable component of the motor control system. Furthermore, the results suggest that the domain of the cerebellar timing process is not limited to the motor system, but is employed by other perceptual and cognitive systems when temporally predictive computations are needed.

1,237 citations

Journal ArticleDOI
TL;DR: Brain-imaging data revealed a partial overlap between neural systems involved in the performance of spatial versus temporal orientation of attention tasks, and hemispheric asymmetries revealed preferential right and left parietal activation for spatial and temporal attention, respectively.
Abstract: Although attention is distributed across time as well as space, the temporal allocation of attention has been less well researched than its spatial counterpart. A temporal analog of the covert spatial orientation task [Posner MI, Snyder CRR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol Gen 109:160-174] was developed to compare the neural systems involved in directing attention to spatial locations versus time intervals. We asked whether there exists a general system for allocating attentional resources, independent of stimulus dimension, or whether functionally specialized brain regions are recruited for directing attention toward spatial versus temporal aspects of the environment. We measured brain activity in seven healthy volunteers by using positron emission tomography (PET) and in eight healthy volunteers by using functional magnetic resonance imaging (fMRI). The task manipulated cued attention to spatial locations (S) and temporal intervals (T) in a factorial design. Symbolic central cues oriented subjects toward S only (left or right), toward T only (300 msec or 1500 msec), toward both S and T simultaneously, or provided no information regarding S or T. Subjects also were scanned during a resting baseline condition. Behavioral data showed benefits and costs for performance during temporal attention similar to those established for spatial attention. Brain-imaging data revealed a partial overlap between neural systems involved in the performance of spatial versus temporal orientation of attention tasks. Additionally, hemispheric asymmetries revealed preferential right and left parietal activation for spatial and temporal attention, respectively. Parietal cortex was activated bilaterally by attending to both dimensions simultaneously. This is the first direct comparison of the neural correlates of attending to spatial versus temporal cues.

1,109 citations

Journal ArticleDOI
Warren H. Meck1
TL;DR: A psychological model of duration discrimination that differentiates the speed of an internal clock used for the registration of current sensory input from the speedOf the memory-storage process used forThe representation of the durations of prior stimulus events has proven useful in integrating these findings.
Abstract: Time is a guiding force in the behavior of all organisms. For both a rat in an experimental setting (e.g. Skinner box) trying to predict when reinforcement will be delivered and a human in a restaurant waiting for his dinner to be served an accurate perception of time is an important determinant of behavior. Recent research has used a combination of pharmacological and behavioral manipulations to gain a fuller understanding of how temporal information is processed. A psychological model of duration discrimination that differentiates the speed of an internal clock used for the registration of current sensory input from the speed of the memory-storage process used for the representation of the durations of prior stimulus events has proven useful in integrating these findings. Current pharmacological research suggests that different stages of temporal processing may involve separate brain regions and be modified by different neurotransmitter systems. For example, the internal clock used to time durations in the seconds-to-minutes range appears linked to dopamine (DA) function in the basal ganglia, while temporal memory and attentional mechanisms appear linked to acetylcholine (ACh) function in the frontal cortex. These two systems are connected by frontal-striatal loops, thus allowing for the completion of the timing sequences involved in duration discrimination.

851 citations


Network Information
Related Topics (5)
Working memory

26.5K papers, 1.6M citations

88% related
Visual perception

20.8K papers, 997.2K citations

88% related
Cognition

99.9K papers, 4.3M citations

86% related
Recall

23.6K papers, 989.7K citations

83% related
Social cognition

16.1K papers, 1.2M citations

82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202177
202083
2019101
201895
201796