scispace - formally typeset
Search or ask a question
Topic

Time perception

About: Time perception is a research topic. Over the lifetime, 1918 publications have been published within this topic receiving 87020 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results are interpreted as an impairment of temporal event structuring in schizophrenia which does not specifically affect sensory binding operations but rather, the explicit access to timing information associated here with audiovisual speech processing.

88 citations

Journal ArticleDOI
TL;DR: The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense.
Abstract: Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.

87 citations

Journal ArticleDOI
TL;DR: Modulation of the MePFC excitability influenced the subjective level of DD for delayed rewards and interfered with synaptic dopamine level in the striatum, suggesting that the subjective sense of time and value of reward are critically controlled by these important regions.

87 citations

Journal ArticleDOI
TL;DR: The authors used two versions of a temporal bisection procedure to study the perception of duration in individuals with autism and observed quantifiable differences and characteristic patterns in participants' timing functions.
Abstract: Perception of time, in the seconds to minutes range, is not well characterized in autism. The required interval timing system (ITS) develops at the same stages during infancy as communication, social reciprocity, and other cognitive and behavioral functions. The authors used two versions of a temporal bisection procedure to study the perception of duration in individuals with autism and observed quantifiable differences and characteristic patterns in participants' timing functions. Measures of timing performance correlated with certain autism diagnostic and intelligence scores, and parents described individuals with autism as having a poor sense of time. The authors modeled the data to provide a relative assessment of ITS function in these individuals. The implications of these results for the understanding of autism are discussed.

87 citations

Journal ArticleDOI
TL;DR: The data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypicals.

86 citations


Network Information
Related Topics (5)
Working memory
26.5K papers, 1.6M citations
88% related
Visual perception
20.8K papers, 997.2K citations
88% related
Cognition
99.9K papers, 4.3M citations
86% related
Recall
23.6K papers, 989.7K citations
83% related
Social cognition
16.1K papers, 1.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202395
2022178
202177
202083
2019101
201896