Topic
Timing attack
About: Timing attack is a(n) research topic. Over the lifetime, 726 publication(s) have been published within this topic receiving 25462 citation(s).
Papers published on a yearly basis
Papers
More filters
18 Aug 1996
TL;DR: By carefully measuring the amount of time required to perform private key operalions, attackers may be able to find fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems.
Abstract: By carefully measuring the amount of time required tm perform private key operalions, attackers may be able to find fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems. Against, a valnerable system, the attack is computationally inexpensive and often requires only known ciphertext. Actual systems are potentially at risk, including cryptographic tokens, network-based cryptosystems, and other applications where attackers can make reasonably accurate timing measurements. Techniques for preventing the attack for RSA and Diffie-Hellman are presented. Some cryptosystems will need to be revised to protect against the attack, and new protocols and algorithms may need to incorporate measures to prevenl timing attacks.
3,605 citations
13 Feb 2006
TL;DR: In this article, the authors describe side-channel attacks based on inter-process leakage through the state of the CPU's memory cache, which can be used for cryptanalysis of cryptographic primitives that employ data-dependent table lookups.
Abstract: We describe several software side-channel attacks based on inter-process leakage through the state of the CPU’s memory cache. This leakage reveals memory access patterns, which can be used for cryptanalysis of cryptographic primitives that employ data-dependent table lookups. The attacks allow an unprivileged process to attack other processes running in parallel on the same processor, despite partitioning methods such as memory protection, sandboxing and virtualization. Some of our methods require only the ability to trigger services that perform encryption or MAC using the unknown key, such as encrypted disk partitions or secure network links. Moreover, we demonstrate an extremely strong type of attack, which requires knowledge of neither the specific plaintexts nor ciphertexts, and works by merely monitoring the effect of the cryptographic process on the cache. We discuss in detail several such attacks on AES, and experimentally demonstrate their applicability to real systems, such as OpenSSL and Linux’s dm-crypt encrypted partitions (in the latter case, the full key can be recovered after just 800 writes to the partition, taking 65 milliseconds). Finally, we describe several countermeasures for mitigating such attacks.
991 citations
TL;DR: In this paper, the authors present a timing attack against OpenSSL and demonstrate that timing attacks against network servers are practical and therefore security systems should defend against them, and they show that timing attack applies to general software systems.
Abstract: Timing attacks are usually used to attack weak computing devices such as smartcards. We show that timing attacks apply to general software systems. Specifically, we devise a timing attack against OpenSSL. Our experiments show that we can extract private keys from an OpenSSL-based web server running on a machine in the local network. Our results demonstrate that timing attacks against network servers are practical and therefore security systems should defend against them.
828 citations
16 Oct 2012
TL;DR: This paper details the construction of an access-driven side-channel attack by which a malicious virtual machine (VM) extracts fine-grained information from a victim VM running on the same physical computer and demonstrates the attack in a lab setting by extracting an ElGamal decryption key from a victims using the most recent version of the libgcrypt cryptographic library.
Abstract: This paper details the construction of an access-driven side-channel attack by which a malicious virtual machine (VM) extracts fine-grained information from a victim VM running on the same physical computer. This attack is the first such attack demonstrated on a symmetric multiprocessing system virtualized using a modern VMM (Xen). Such systems are very common today, ranging from desktops that use virtualization to sandbox application or OS compromises, to clouds that co-locate the workloads of mutually distrustful customers. Constructing such a side-channel requires overcoming challenges including core migration, numerous sources of channel noise, and the difficulty of preempting the victim with sufficient frequency to extract fine-grained information from it. This paper addresses these challenges and demonstrates the attack in a lab setting by extracting an ElGamal decryption key from a victim using the most recent version of the libgcrypt cryptographic library.
775 citations
01 Jan 1998
TL;DR: A graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker, and is used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc.
Abstract: This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.
762 citations