scispace - formally typeset

Topic

TIMIT

About: TIMIT is a(n) research topic. Over the lifetime, 1401 publication(s) have been published within this topic receiving 59888 citation(s). The topic is also known as: TIMIT Acoustic-Phonetic Continuous Speech Corpus.


Papers
More filters
Proceedings ArticleDOI
26 May 2013
TL;DR: This paper investigates deep recurrent neural networks, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs.
Abstract: Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates deep recurrent neural networks, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.

5,938 citations

Posted Content
Abstract: Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates \emph{deep recurrent neural networks}, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.

5,310 citations

Proceedings ArticleDOI
25 Jun 2006
TL;DR: This paper presents a novel method for training RNNs to label unsegmented sequences directly, thereby solving both problems of sequence learning and post-processing.
Abstract: Many real-world sequence learning tasks require the prediction of sequences of labels from noisy, unsegmented input data. In speech recognition, for example, an acoustic signal is transcribed into words or sub-word units. Recurrent neural networks (RNNs) are powerful sequence learners that would seem well suited to such tasks. However, because they require pre-segmented training data, and post-processing to transform their outputs into label sequences, their applicability has so far been limited. This paper presents a novel method for training RNNs to label unsegmented sequences directly, thereby solving both problems. An experiment on the TIMIT speech corpus demonstrates its advantages over both a baseline HMM and a hybrid HMM-RNN.

3,570 citations

Dataset
01 Jan 1993
Abstract: The TIMIT corpus of read speech is designed to provide speech data for acoustic-phonetic studies and for the development and evaluation of automatic speech recognition systems. TIMIT contains broadband recordings of 630 speakers of eight major dialects of American English, each reading ten phonetically rich sentences. The TIMIT corpus includes time-aligned orthographic, phonetic and word transcriptions as well as a 16-bit, 16kHz speech waveform file for each utterance. Corpus design was a joint effort among the Massachusetts Institute of Technology (MIT), SRI International (SRI) and Texas Instruments, Inc. (TI). The speech was recorded at TI, transcribed at MIT and verified and prepared for CD-ROM production by the National Institute of Standards and Technology (NIST). The TIMIT corpus transcriptions have been hand verified. Test and training subsets, balanced for phonetic and dialectal coverage, are specified. Tabular computer-searchable information is included as well as written documentation.

2,094 citations

Network Information
Related Topics (5)
Recurrent neural network

29.2K papers, 890K citations

76% related
Feature (machine learning)

33.9K papers, 798.7K citations

75% related
Feature vector

48.8K papers, 954.4K citations

74% related
Natural language

31.1K papers, 806.8K citations

73% related
Deep learning

79.8K papers, 2.1M citations

72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202165
202086
201977
201895
201778