scispace - formally typeset
Search or ask a question
Topic

TIMIT

About: TIMIT is a research topic. Over the lifetime, 1401 publications have been published within this topic receiving 59888 citations. The topic is also known as: TIMIT Acoustic-Phonetic Continuous Speech Corpus.


Papers
More filters
Proceedings ArticleDOI
04 Sep 2005
TL;DR: This paper presents the results on the TIMIT phone classification task and shows that HCRFs outperforms comparable ML and CML/MMI trained HMMs and has the ability to handle complex features without any change in training procedure.
Abstract: In this paper, we show the novel application of hidden conditional random fields (HCRFs) – conditional random fields with hidden state sequences – for modeling speech. Hidden state sequences are critical for modeling the non-stationarity of speech signals. We show that HCRFs can easily be trained using the simple direct optimization technique of stochastic gradient descent. We present the results on the TIMIT phone classification task and show that HCRFs outperforms comparable ML and CML/MMI trained HMMs. In fact, HCRF results on this task are the best single classifier results known to us. We note that the HCRF framework is easily extensible to recognition since it is a state and label sequence modeling technique. We also note that HCRFs have the ability to handle complex features without any change in training procedure.

352 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore joint optimization of masking functions and deep recurrent neural networks for monaural source separation tasks, including speech separation, singing voice separation, and speech denoising.
Abstract: Monaural source separation is important for many real world applications. It is challenging because, with only a single channel of information available, without any constraints, an infinite number of solutions are possible. In this paper, we explore joint optimization of masking functions and deep recurrent neural networks for monaural source separation tasks, including speech separation, singing voice separation, and speech denoising. The joint optimization of the deep recurrent neural networks with an extra masking layer enforces a reconstruction constraint. Moreover, we explore a discriminative criterion for training neural networks to further enhance the separation performance. We evaluate the proposed system on the TSP, MIR-1K, and TIMIT datasets for speech separation, singing voice separation, and speech denoising tasks, respectively. Our approaches achieve 2.30-4.98 dB SDR gain compared to NMF models in the speech separation task, 2.30-2.48 dB GNSDR gain and 4.32-5.42 dB GSIR gain compared to existing models in the singing voice separation task, and outperform NMF and DNN baselines in the speech denoising task.

352 citations

01 Jan 2013
TL;DR: Improvements in speech recognition are suggested without increasing the number of training epochs, and it is suggested that data transformations should be an important component of training neural networks for speech, especially for data limited projects.
Abstract: Augmenting datasets by transforming inputs in a way that does not change the label is a crucial ingredient of the state of the art methods for object recognition using neural networks. However this approach has (to our knowledge) not been exploited successfully in speech recognition (with or without neural networks). In this paper we lay the foundation for this approach, and show one way of augmenting speech datasets by transforming spectrograms, using a random linear warping along the frequency dimension. In practice this can be achieved by using warping techniques that are used for vocal tract length normalization (VTLN) - with the difference that a warp factor is generated randomly each time, during training, rather than tting a single warp factor to each training and test speaker (or utterance). At test time, a prediction is made by averaging the predictions over multiple warp factors. When this technique is applied to TIMIT using Deep Neural Networks (DNN) of dierent depths, the Phone Error Rate (PER) improved by an average of 0.65% on the test set. For a Convolutional neural network (CNN) with convolutional layer in the bottom, a gain of 1.0% was observed. These improvements were achieved without increasing the number of training epochs, and suggest that data transformations should be an important component of training neural networks for speech, especially for data limited projects.

351 citations

Proceedings ArticleDOI
01 Dec 2009
TL;DR: An unsupervised learning framework is presented to address the problem of detecting spoken keywords by using segmental dynamic time warping to compare the Gaussian posteriorgrams between keyword samples and test utterances and obtaining the keyword detection result.
Abstract: In this paper, we present an unsupervised learning framework to address the problem of detecting spoken keywords. Without any transcription information, a Gaussian Mixture Model is trained to label speech frames with a Gaussian posteriorgram. Given one or more spoken examples of a keyword, we use segmental dynamic time warping to compare the Gaussian posteriorgrams between keyword samples and test utterances. The keyword detection result is then obtained by ranking the distortion scores of all the test utterances. We examine the TIMIT corpus as a development set to tune the parameters in our system, and the MIT Lecture corpus for more substantial evaluation. The results demonstrate the viability and effectiveness of our unsupervised learning framework on the keyword spotting task.

350 citations

Proceedings Article
21 Jun 2014
TL;DR: This paper introduces a simple, yet powerful modification to the simple RNN architecture, the Clockwork RNN (CW-RNN), in which the hidden layer is partitioned into separate modules, each processing inputs at its own temporal granularity, making computations only at its prescribed clock rate.
Abstract: Sequence prediction and classification are ubiquitous and challenging problems in machine learning that can require identifying complex dependencies between temporally distant inputs. Recurrent Neural Networks (RNNs) have the ability, in theory, to cope with these temporal dependencies by virtue of the short-term memory implemented by their recurrent (feedback) connections. However, in practice they are difficult to train successfully when long-term memory is required. This paper introduces a simple, yet powerful modification to the simple RNN (SRN) architecture, the Clockwork RNN (CW-RNN), in which the hidden layer is partitioned into separate modules, each processing inputs at its own temporal granularity, making computations only at its prescribed clock rate. Rather than making the standard RNN models more complex, CW-RNN reduces the number of SRN parameters, improves the performance significantly in the tasks tested, and speeds up the network evaluation. The network is demonstrated in preliminary experiments involving three tasks: audio signal generation, TIMIT spoken word classification, where it outperforms both SRN and LSTM networks, and online handwriting recognition, where it outperforms SRNs.

335 citations


Network Information
Related Topics (5)
Recurrent neural network
29.2K papers, 890K citations
76% related
Feature (machine learning)
33.9K papers, 798.7K citations
75% related
Feature vector
48.8K papers, 954.4K citations
74% related
Natural language
31.1K papers, 806.8K citations
73% related
Deep learning
79.8K papers, 2.1M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202262
202167
202086
201977
201895