Topic

# Timoshenko beam theory

About: Timoshenko beam theory is a(n) research topic. Over the lifetime, 9426 publication(s) have been published within this topic receiving 200570 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

••

1,466 citations

••

TL;DR: In this article, the Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam theories are reformulated using the nonlocal differential constitutive relations of Eringen.

Abstract: Various available beam theories, including the Euler–Bernoulli, Timoshenko, Reddy, and Levinson beam theories, are reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived, and variational statements in terms of the generalized displacements are presented. Analytical solutions of bending, vibration and buckling are presented using the nonlocal theories to bring out the effect of the nonlocal behavior on deflections, buckling loads, and natural frequencies. The theoretical development as well as numerical solutions presented herein should serve as references for nonlocal theories of beams, plates, and shells.

1,352 citations

•

01 Jan 1997

TL;DR: In this paper, the authors present a one-dimensional analysis of fiber-reinforced composite materials and their properties, including the properties of the components of a Lamina and their relationship with other components.

Abstract: Introduction and Mathematical Preliminaries Fiber-Reinforced Composite Materials. Vectors and Tensors. Matrices. Transformation of Vector and Tensor Components. Integral Relations. Equations of Anisotropic Elasticity Classification of Equations. Kinematics. Kinetics. Constitutive Equations. Equations of Thermoelasticity and Electroelasticity. Summary. Virtual Work Principles and Variational Methods Virtual Work. The Variational Operator and Functionals. Extrema of Functionals. Virtual Work Principles. Variational Methods. Summary. Introduction to Composite Materials Basic Concepts and Terminology. Constitutive Equations of a Lamina. Transformation of Stresses and Strains. Plane Stress Constitutive Relations. Classical and First-Order Theories of Laminated Composite Plates Introduction. An Overview of ESL Laminate Theories. The Classical Laminated Plate Theory. The First-Order Laminated Plate Theory. Stiffness Characteristics for Selected Laminates. One-Dimensional Analysis of Laminated Plates Introduction. Analysis of Laminated Beams Using CLPT. Analysis of Laminated Beams Using FSDT. Cylindrical Bending Using CLPT. Cylindrical Bending Using FSDT. Closing Remarks. Analysis of Specially Orthotropic Plates Using CLPT Introduction. Bending of Simply Supported Plates. Bending of Plates with Two Opposite Edges Simply Supported. Bending of Rectangular Plates with Various Boundary Conditions. Buckling of Simply Supported Plates Under Compressive Loads. Buckling of Rectangular Plates Under Inplane Shear Load. Vibration of Simply Supported Plates. Buckling and Vibration of Plates with Two Parallel Edges Simply Supported. Closure. Analytical Solutions of Rectangular Laminates Using CLPT Governing Equations in Terms of Displacements. Admissible Boundary Conditions for the Navier Solutions. Navier Solutions of Antisymmetric Cross-Ply Laminates. The Navier Solutions of Antisymmetric Angle-Ply Laminates. The LTvy Solutions. Analysis of Midplane Symmetric Laminates. Transient Analysis. Summary. Analytical Solutions of Rectangular Laminates Using FSDT Introduction. Simply Supported Antisymmetric Cross-Ply Laminates. Simply Supported Antisymmetric Angle-Ply Laminates. Antisymmetric Cross-Ply Laminates with Two Opposite Edges Simply Supported. Antisymmetric Angle-Ply Laminates with Two Opposite Edges Simply Supported. Transient Solutions. Summary. Finite Element Analysis of Composite Laminates Introduction. Laminated Beams and Plate Strips by CLPT. Timoshenko Beam/Plate Theory. Numerical Results for Beams and Plate Strips. Finite Element Models of Laminated Plates (CLPT). Finite Element Models of Laminated Plates (FSDT). Summary. Refined Theories of Laminated Composite Plates Introduction. A Third-Order Plate Theory. Higher-Order Laminate Stiffness Characteristics. The Navier Solutions. LTvy Solutions of Cross-Ply Laminates. Displacement Finite Element Model. Layerwise Theories and Variable Kinematic Models In troduction. Development of the Theory. Finite Element Model. Variable Kinematic Formulations. Nonlinear Analysis of Composite Laminates Introduction. Nonlinear Stiffness Coefficients. Solution Methods for Nonlinear Algebraic Equations. Computational Aspects and Numerical Examples. Closure. Index Most chapters include Exercises and References for Additional Reading

1,331 citations

••

TL;DR: In this paper, a microstructure-dependent Timoshenko beam model is developed using a variational formulation, which is based on a modified couple stress theory and Hamilton's principle.

Abstract: A microstructure-dependent Timoshenko beam model is developed using a variational formulation. It is based on a modified couple stress theory and Hamilton's principle. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Timoshenko beam theory. Moreover, both bending and axial deformations are considered, and the Poisson effect is incorporated in the current model, which differ from existing Timoshenko beam models. The newly developed non-classical beam model recovers the classical Timoshenko beam model when the material length scale parameter and Poisson's ratio are both set to be zero. In addition, the current Timoshenko beam model reduces to a microstructure-dependent Bernoulli–Euler beam model when the normality assumption is reinstated, which also incorporates the Poisson effect and can be further reduced to the classical Bernoulli–Euler beam model. To illustrate the new Timoshenko beam model, the static bending and free vibration problems of a simply supported beam are solved by directly applying the formulas derived. The numerical results for the static bending problem reveal that both the deflection and rotation of the simply supported beam predicted by the new model are smaller than those predicted by the classical Timoshenko beam model. Also, the differences in both the deflection and rotation predicted by the two models are very large when the beam thickness is small, but they are diminishing with the increase of the beam thickness. Similar trends are observed for the free vibration problem, where it is shown that the natural frequency predicted by the new model is higher than that by the classical model, with the difference between them being significantly large only for very thin beams. These predicted trends of the size effect in beam bending at the micron scale agree with those observed experimentally. Finally, the Poisson effect on the beam deflection, rotation and natural frequency is found to be significant, which is especially true when the classical Timoshenko beam model is used. This indicates that the assumption of Poisson's effect being negligible, which is commonly used in existing beam theories, is inadequate and should be individually verified or simply abandoned in order to obtain more accurate and reliable results.

906 citations