scispace - formally typeset
Search or ask a question
Topic

Timoshenko beam theory

About: Timoshenko beam theory is a research topic. Over the lifetime, 9426 publications have been published within this topic receiving 200570 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a finite element cross-sectional beam analysis capable of capturing transverse shear effects is presented, which uses the variational-asymptotic method and can handle beams of general crosssectional shape and arbitrary anisotropic material.

153 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered both mixed and displacement-based methods for the Timoshenko beam problem and showed that locking-free solutions are obtained for mixed methods independently on the approximation degrees selected for the unknown fields.

152 citations

Journal ArticleDOI
TL;DR: In this article, the effect of prescribed delamination on natural frequencies of laminated composite beam specimens is examined both experimentally and theoretically, and backpropagation neural network models are developed using the results from the beam theory and used to predict delamination size.
Abstract: The effect of prescribed delamination on natural frequencies of laminated composite beam specimens is examined both experimentally and theoretically. Delamination is of particular interest because it can cause catastrophic failure of the composite structure. One consequence of delamination in a composite structure is a change in its stiffness. This change in stiffness will degrade the modal frequencies of the composite structure. Modal testing of a perfect beam and beams with different delamination size is conducted using polyvinylidene fluoride film (PVDF) sensors and piezoceramic (PZT) patch with sine sweep actuation. Modal testing of beams is also conducted using PVDF sensors and instrumented hammer excitation. The results of piezoceramic patch excitation and instrumented hammer excitation are discussed. The experimental modal frequencies are compared with the results obtained using a simplified beam theory. Also, backpropagation neural network models are developed using the results from the beam theory and used to predict delamination size. The effect of learning rate and momentum rate on neural network performance are discussed. Modal frequencies can be easily and accurately obtained with PZT patch excitation and PVDF sensing. There is good agreement between modal frequencies from modal testing and those from the simplified beam theory. The neural network models developed successfully predict delamination size.

151 citations

Journal ArticleDOI
TL;DR: In this article, the static bending, free vibration, and dynamic response of monomorph, bimorph, and multimorph actuators made of functionally graded piezoelectric materials (FGPMs) under a combined thermal-electro-mechanical load by using the Timoshenko beam theory was investigated.
Abstract: This paper investigates the static bending, free vibration, and dynamic response of monomorph, bimorph, and multimorph actuators made of functionally graded piezoelectric materials (FGPMs) under a combined thermal-electro-mechanical load by using the Timoshenko beam theory. It is assumed that all of the material properties of the actuator, except for Poisson's ratio, are position dependent due to a continuous variation in material composition through the thickness direction. Theoretical formulations are derived by employing Hamilton's principle and include the effect of transverse shear deformation and axial and rotary inertias. The governing differential equations are then solved using the differential quadrature method to determine the important performance indices, such as deflection, reaction force, natural frequencies, and dynamic response of various FGPM actuators. A comprehensive parametric study is conducted to show the influence of shear deformation, temperature rise, material composition, slenderness ratio, end support, and total number of layers on the thermo-electro-mechanical characteristics. It is found that FGPM monomorph actuators exhibit the so-called 'non-intermediate' behavior under an applied electric field.

151 citations

Journal ArticleDOI
TL;DR: In this article, free vibration characteristics of functionally graded (FG) nanobeams based on third-order shear deformation beam theory are investigated by presenting a Navier-type solution.
Abstract: In this paper, free vibration characteristics of functionally graded (FG) nanobeams based on third-order shear deformation beam theory are investigated by presenting a Navier-type solution. Material properties of FG nanobeam are supposed to change continuously along the thickness according to the power-law form. The effect of small scale is considered based on nonlocal elasticity theory of Eringen. Through Hamilton’s principle and third-order shear deformation beam theory, the nonlocal governing equations are derived and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results for FG nanobeams as compared to some cases in the literature. The numerical investigations are presented to investigate the effect of the several parameters such as material distribution profile, small-scale effects, slenderness ratio and mode number on vibrational response of the FG nanobeams in detail. It is concluded that various factors such as nonlocal parameter and gradient index play notable roles in vibrational response of FG nanobeams.

151 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
88% related
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Numerical analysis
52.2K papers, 1.2M citations
84% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Stress (mechanics)
69.5K papers, 1.1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023194
2022437
2021509
2020487
2019540
2018508