scispace - formally typeset
Search or ask a question
Topic

Timoshenko beam theory

About: Timoshenko beam theory is a research topic. Over the lifetime, 9426 publications have been published within this topic receiving 200570 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an incremental total Lagrangian formulation for curved beam elements that includes the effect of large rotation increments is developed, and a complete and symmetric tangent stiffness matrix is obtained.
Abstract: SUMMARY An incremental Total Lagrangian Formulation for curved beam elements that includes the effect of large rotation increments is developed. A complete and symmetric tangent stiffness matrix is obtained and the numerical results show, in general, an improvement over the standard formulation where the assumption of infinitesimal rotation increments is made in the derivation of the tangent stiffness matrix.

105 citations

Journal ArticleDOI
TL;DR: In this paper, an exact solution is proposed for the nonlinear forced vibration analysis of nanobeams made of functionally graded materials (FGMs) subjected to thermal environment including the effect of surface stress.
Abstract: In the present investigation, an exact solution is proposed for the nonlinear forced vibration analysis of nanobeams made of functionally graded materials (FGMs) subjected to thermal environment including the effect of surface stress. The material properties of functionally graded (FG) nanobeams vary through the thickness direction on the basis of a simple power law. The geometrically nonlinear beam model, taking into account the surface stress effect, is developed by implementing the Gurtin–Murdoch elasticity theory together with the classical Euler–Bernoulli beam theory and using a variational approach. Hamilton’s principle is utilized to obtain the nonlinear governing partial differential equation and corresponding boundary conditions. After that, the Galerkin technique is employed in order to convert the nonlinear partial differential equation into a set of nonlinear ordinary differential equations. This new set is then solved analytically based on the method of multiple scales which results in the frequency–response curves of FG nanobeams in the presence of surface stress effect. It is revealed that by increasing the beam thickness, the surface stress effect diminishes and the maximum amplitude of the stable response is shifted to the higher excitation frequencies.

105 citations

Journal ArticleDOI
TL;DR: In this paper, the Euler-Bernoulli beam theory is used to derive the nonlinear strain-displacement relations and stability equations of a beam made of functionally graded material under various types of thermal loading.
Abstract: Buckling of beams made of functionally graded material under various types of thermal loading is considered. The derivation of equations is based on the Euler–Bernoulli beam theory. It is assumed that the mechanical and thermal nonhomogeneous properties of beam vary smoothly by distribution of power law across the thickness of beam. Using the nonlinear strain–displacement relations, equilibrium equations and stability equations of beam are derived. The beam is assumed under three types of thermal loading, namely; uniform temperature rise, nonlinear, and linear temperature distribution through the thickness. Various types of boundary conditions are assumed for the beam with combination of roller, clamped and simply-supported edges. In each case of boundary conditions and loading, a closed form solution for the critical buckling temperature for the beam is presented. The formulations are compared using reduction of results for the functionally graded beams to those of isotropic homogeneous beams given in the literature.

105 citations

Journal ArticleDOI
TL;DR: In this paper, the higher-order theory is extended to functionally graded beams (FGBs) with continuously varying material properties, and a general solution is constructed, and all physical quantities including transverse deflection, longitudinal warping, bending moment, shear force, and internal stresses can be represented in terms of the derivatives of F. The static solution can be determined for different end conditions.
Abstract: The higher-order theory is extended to functionally graded beams (FGBs) with continuously varying material properties. For FGBs with shear deformation taken into account, a single governing equation for an auxiliary function F is derived from the basic equations of elasticity. It can be used to deal with forced and free vibrations as well as static behaviors of FGBs. A general solution is constructed, and all physical quantities including transverse deflection, longitudinal warping, bending moment, shear force, and internal stresses can be represented in terms of the derivatives of F. The static solution can be determined for different end conditions. Explicit expressions for cantilever, simply supported, and clamped-clamped FGBs for typical loading cases are given. A comparison of the present static solution with existing elasticity solutions indicates that the method is simple and efficient. Moreover, the gradient variation of Young’s modulus and Poisson’s ratio may be arbitrary functions of the thickness direction. Functionally graded Rayleigh and Euler–Bernoulli beams are two special cases when the shear modulus is sufficiently high. Moreover, the classical Levinson beam theory is recovered from the present theory when the material constants are unchanged. Numerical computations are performed for a functionally graded cantilever beam with a gradient index obeying power law and the results are displayed graphically to show the effects of the gradient index on the deflection and stress distribution, indicating that both stresses and deflection are sensitive to the gradient variation of material properties.

104 citations

Journal ArticleDOI
TL;DR: In this paper, an exact dynamic stiffness matrix is presented for a composite beam, which includes the effects of shear deformation and rotatory inertia, and the use of such expressions leads to substantial savings in computer time when compared with matrix inversion method.

104 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
88% related
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Numerical analysis
52.2K papers, 1.2M citations
84% related
Boundary value problem
145.3K papers, 2.7M citations
80% related
Stress (mechanics)
69.5K papers, 1.1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023194
2022437
2021509
2020487
2019540
2018508