scispace - formally typeset
Search or ask a question
Topic

Tip clearance

About: Tip clearance is a research topic. Over the lifetime, 2637 publications have been published within this topic receiving 32671 citations.


Papers
More filters
Journal ArticleDOI
K.S. Lau1, R.L. Mahajan1
TL;DR: In this article, the thermal resistances and pressure drops of the heat sinks were measured for fin densities of 1.3, 4.6, and 5.6 fin/cm and tip clearances varying from 0 to 2 cm.
Abstract: Motivated by the high heat dissipation requirements of the advanced VLSI packages, experiments were performed with several heat sinks to study their heat transfer characteristics. The thermal resistances and pressure drops of the heat sinks were measured for fin densities of 1.3, 4.6, and 5.6 fins/cm and tip clearances varying from 0 to 2 cm. The mass flow rate varied from 0.01 to 0.1 kg/s. For a fixed mass flow rate and zero tip clearance, the 1.3-fins/cm heat sink dissipated four times more heat than a heat sink without fins, and the 5.6-fins/cm heat sink dissipated seven times more. Accompanying this increased heat transfer, however, is an increase in pressure drop. With an increase in tip clearance, the pressure drop penalty is reduced, but the heat transfer gain is also lower. This information is presented for different fin densities and tip clearances and should be useful to packaging engineers for the optimal design of high-density finned heat sinks. >

42 citations

Journal ArticleDOI
TL;DR: In this article, a first generation mechanically actuated active clearance control system for turbine blade tip clearance management is presented along with the design of a bench top test rig in which the system is to be evaluated.
Abstract: Improved blade tip sealing in the high pressure compressor and high pressure turbine can provide dramatic improvements in specific fuel consumption, time-on-wing, compressor stall margin and engine efficiency as well as increased payload and mission range capabilities of both military and commercial gas turbine engines. The design of a first generation mechanically actuated active clearance control system for turbine blade tip clearance management is presented along with the design of a bench top test rig in which the system is to be evaluated. The active clearance control system utilizes mechanically actuated seal carrier segments and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. The purpose of this active clearance control system is to improve upon current case cooling methods. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, re-burst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). The active turbine blade tip clearance control system design presented herein will be evaluated to ensure that proper response and positional accuracy is achievable under simulated high-pressure turbine conditions. The test rig will simulate proper seal carrier pressure and temperature loading as well as the magnitudes and rates of blade tip clearance changes of an actual gas turbine engine. The results of these evaluations will be presented in future works.

42 citations

Journal ArticleDOI
TL;DR: In this article, the impact of the interaction between stator-rotor interaction and rotor tip clearance flow on rotor performance has been investigated using unsteady three-dimensional Reynolds-averaged Navier-Stokes simulations.
Abstract: A study has been conducted, using unsteady three-dimensional Reynolds-averaged Navier-Stokes simulations to determine the impact on rotor performance of the interaction between upstream (steady defect and time-varying defect) stator wakes and rotor tip clearance flow. The key effects of the interaction between steady stator wakes and rotor tip clearance flow are: 1) a decrease in loss and blockage associated with tip clearance flow; 2) an increase in passage static pressure rise. Performance benefit is seen in the operability range from near design to high loading. The benefit is modest near design and increases with loading. Significant beneficial changes due to the stator-rotor interaction occur when the phenomenon of tip clearance flow double-leakage is present. Double-leakage occurs when the tip clearance flow passes through the tip gap of the adjacent blade. It is detrimental for compressor performance. The effect of strong stator-rotor interaction is to suppress double-leakage on a time-average basis. Double-leakage typically takes place at high loading but can be present at design condition as well, for modern highly loaded compressor. A benefit due to unsteady interaction is also observed in the operability range of the rotor. A new generic causal mechanism is proposed to explain the observed changes in performance. It identifies the interaction between the trip clearance flow and the pressure pulses, induced on the rotor blade pressure surface by the upstream wakes, as the cause for the observed effects. The direct effect of the interaction is a decrease in the time-average double-leakage flow through the tip clearance gap so that the stream-wise defect of the exiting tip flow is lower with respect to the main flow. A lower defect leads to a decrease in loss and blockage generation and hence an enhanced performance compared to that in the steady situation. The performance benefits increase monotonically with loading and scale linearly with upstream wake velocity defect. With oscillating defect stator wakes, rotor performance shows dependence on oscillation frequency. Changes in the tip region occur at a particular reduced frequency leading to (1) decrease in blockage, and (2) increase in passage loss. The changes in rotor performance at a particular reduced frequency are hypothesized to be associated with the inherent unsteadiness of the tip clearance vortex and its resonance behavior excited by the oscillating wakes.

42 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the pre-stall behavior of axial flow compressor rotor, which was experimentally observed with spike-type stall inception, systematic experimental and whole-passage simulations were laid out to analyze the internal flow fields in the test rotor.
Abstract: To investigate the pre-stall behavior of an axial flow compressor rotor, which was experimentally observed with spike-type stall inception, systematic experimental and whole-passage simulations were laid out to analyze the internal flow fields in the test rotor. In this part, emphases were put on the analyses of experimental results and the predicted results from steady simulations and unsteady simulations, which converged to equilibrium solutions with nearly periodic fluctuations of efficiency. The objective was to uncover the unsteady behavior of tip clearance flow and its associated flow mechanism at near-stall conditions. To validate the steady simulation results, the predicted total characteristics and spanwise distributions of aerodynamic parameters were first compared with the measured steady data, and a good agreement was achieved. Then, the numerically obtained unsteady flow fields during one period of efficiency fluctuations were analyzed in detail. The instantaneous flow structure near casing showed that tip secondary vortex (TSV), which appeared in the previous unsteady single-passage simulations, did exist in tip flow fields of whole-passage simulations. The cyclical motion of this vortex was the main source of the nearly periodic variation of efficiency. The simulated active period of TSV increased when the mass flow rate decreased. The simulated frequency of TSV at flow condition very close to the measured stall point equaled the frequency of the characteristic hump identified from the instantaneous casing pressure measurements. This coincidence implied that the occurrence of this hump was most probably a result of the movement of TSV. Further flow field analyses indicated that the interaction of the low-energy leakage fluid from adjacent passages with the broken-down tip leakage vortex (TLV) was the flow mechanism for the formation of TSV. Once TSV appeared in tip flow fields, its rearward movement would lead to a periodic variation in near-tip blade loading, which in turn altered the strength of TLV and TSV, accordingly, the low-energy regions associated with the breakdown of TLV and the motion of TSV, thus establishing a self-sustained unsteady flow oscillation in tip flow fields.

42 citations

Patent
14 Nov 2002
TL;DR: In this paper, a method of determining blade tip clearance in a gas turbine includes measuring the distance A between an ultrasonic sensor (16) and a stator shroud surface (14), measuring B a radio frequency sensor (20) and rotating blade tips (13) of the gas turbine; and subtracting the distance measured by the ultrasonic sensors from the distance calculated by the radio frequency sensors (20).
Abstract: A method of determining blade tip clearance in a gas turbine includes (a) measuring the distance A between an ultrasonic sensor (16) and a stator shroud surface (14), (b) measuring the distance between B a radio frequency sensor (20) and rotating blade tips (13) of the gas turbine; and (c) subtracting the distance measured by the ultrasonic sensor (16) from the distance measured by the radio frequency sensor (20). The apparatus includes an ultrasonic sensor for measuring the distance between a stator shroud surface (14) and the ultrasonic sensor (16), a radio frequency sensor (20) for measuring the distance between rotating blade tips (13) of the gas turbine and the radio frequency sensor; and a computer system (24) for receiving and subtracting the ultrasonic sensor measurements from the radio frequency sensor measurements.

42 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Turbine
106.6K papers, 1M citations
79% related
Laminar flow
56K papers, 1.2M citations
77% related
Heat exchanger
184.2K papers, 1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202354
2022149
202189
2020111
2019116
201897