scispace - formally typeset
Search or ask a question
Topic

Tip clearance

About: Tip clearance is a research topic. Over the lifetime, 2637 publications have been published within this topic receiving 32671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the static and heat transfer coefficient of a first stage gas turbine rotor blade with a profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade was investigated.
Abstract: Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1 x 10(exp 6). The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 % and 9.7% at the cascade inlet. Static pressure measurements are made in the mid-span and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip beat transfer coefficient distribution. Heat transfer coefficient also increases about 15-20% along the leakage flow path at higher turbulence intensity level of 9.7% over 6.1 %.

149 citations

Journal ArticleDOI
TL;DR: In this article, a numerical experiment has been carried out to define the nearstall casing endwall flow field of a high-speed fan rotor, and the results of the simulation show that the interaction of the tip leakage vortex and the in-passage shock plays a major role in determining the fan flow range.
Abstract: A numerical experiment has been carried out to define the near-stall casing endwall flow field of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-passage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock that is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade that controls the flow processes leading to stall.

149 citations

Journal ArticleDOI
C. C. Koch1
TL;DR: In this paper, a simplified stage average pitchline approach is employed so that the procedure can be used during a preliminary design effort before detailed radial distributions of blading geometry and fluid parameters are established.
Abstract: A procedure for estimating the maximum pressure rise potential of axial flow compressor stages is presented. A simplified stage average pitchline approach is employed so that the procedure can be used during a preliminary design effort before detailed radial distributions of blading geometry and fluid parameters are established. Semi-empirical correlations of low speed experimental data are presented that relate the stalling static-pressure-rise coefficient of a compressor stage to cascade passage geometry, tip clearance, bladerow axial spacing and Reynolds number. Blading aspect ratio is accounted for through its effect on normalized clearances, Reynolds number and wall boundary layer blockage. An unexpectedly strong effect of airfoil stagger and of the resulting flow coefficient of the stage’s vector triangle is observed in the experimental data. This is shown to be caused by the differing ability of different types of stage vector triangles to re-energize incoming low-momentum fluid. Use of a suitable “effective” dynamic head in the pressure rise coefficient gives a good correlation of this effect. Stalling pressure rise data from a wide range of both low speed and high speed compressor stages are shown to be in good agreement with these correlations.

145 citations

Journal ArticleDOI
TL;DR: In this article, a new methodology for quantifying compressor endwall blockage and an approach, using this quantification, for defining the links between design parameters, flow conditions, and the growth of blockage due to tip clearance flow is presented.
Abstract: This paper presents a new methodology for quantifying compressor endwall blockage and an approach, using this quantification, for defining the links between design parameters, flow conditions, and the growth of blockage due to tip clearance flow. Numerical simulations, measurements in a low-speed compressor, and measurements in a wind tunnel designed to simulate a compressor clearance flow are used to assess the approach. The analysis thus developed allows predictions of endwall blockage associated with variations in tip clearance, blade stagger angle, inlet boundary layer thickness, loading level, loading profile, solidity, and clearance jet total pressure. The estimates provided by this simplified method capture the trends in blockage with changes in design parameters to within 10 percent. More importantly, however, the method provides physical insight into, and thus guidance for control of, the flow features and phenomena responsible for compressor endwall blockage generation.

141 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Turbine
106.6K papers, 1M citations
79% related
Laminar flow
56K papers, 1.2M citations
77% related
Heat exchanger
184.2K papers, 1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202354
2022149
202189
2020111
2019116
201897