scispace - formally typeset
Search or ask a question
Topic

Tip clearance

About: Tip clearance is a research topic. Over the lifetime, 2637 publications have been published within this topic receiving 32671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of various tip sealing geometries on the blade tip leakage flow and associated heat transfer of a scaled up HPT turbine blade in a low-speed wind tunnel facility was investigated.
Abstract: A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer of a scaled up HPT turbine blade in a low-speed wind tunnel facility. The linear cascade is made of four blades with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the 2-D blade. The wind tunnel accommodates an 116° turn for the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83 × 105 . The upstream wake effect is simulated with a spoked wheel wake generator placed upstream of the cascade. A turbulence grid placed even farther upstream generates the required free-stream turbulence of 4.8%. The center blade has a tip clearance gap of 1.5625% with respect to the blade span. Static pressure measurements are obtained on the blade surface and the shroud. The effect of crosswise trip strips to reduce leakage flow and associated heat transfer is investigated with strips placed along the leakage flow direction, against the leakage flow and along the chord. Cylindrical pin fins and pitch variation of strips over the tip surface are also investigated. Detailed heat transfer measurements are obtained using a steady state HSI-based liquid crystal technique. The effect of periodic unsteady wake effect is also investigated by varying the wake Strouhal number from 0. to 0.2, and to 0.4. Results show that the trip strips placed against the leakage flow produce the lowest heat transfer on the tips compared to all the other cases with a reduction between 10–15% compared to the plain tip. Results also show that the pitch of the strips has a small effect on the overall reduction. Cylindrical pins fins and strips along the leakage flow direction do not decrease the heat transfer coefficients and in some cases enhance the heat transfer coefficients by as much as 20%.Copyright © 2003 by ASME

34 citations

Journal ArticleDOI
TL;DR: In this article, an attempt has been made to study the hydrodynamic performance of pumpjet propulsor and the results show that the thrust and the torque are in good agreement with experimental data.

34 citations

Journal ArticleDOI
TL;DR: In this article, a 3D Navier-Stokes code with film injection and the measured heat flux on a fully film-cooled rotating transonic turbine blade was compared to the Nusselt number data obtained on a rotating turbine blade.

33 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the loss production mechanisms of the pressure driven tip clearance jet do not increase as the clearance is increased to large values, and the increase in blade force is attributed to the effect of the strong tip clearance vortex which does not move across the blade passage to the pressure surface, as is often observed for high stagger blading.
Abstract: Large tip clearances typically in the region of six percent exist in the high pressure stages of compressors of industrial gas turbines. Due to the relatively short annulus height and significant blockage, the tip clearance flow accounts for the largest proportion of loss in the HP. Therefore increasing the understanding of such flows will allow for improvements in design of such compressors, increasing efficiency, stability and the operating range. Experimental and computational techniques have been used to increase the physical understanding of the tip clearance flows through varying clearances in a linear cascade of controlled-diffusion blades. This paper shows two unexpected results. Firstly the loss does not increase with clearances greater than 4% and secondly there is an increase of blade loading towards the tip above 2% clearance. It appears that the loss production mechanisms of the pressure driven tip clearance jet do not increase as the clearance is increased to large values. The increase in blade force is attributed to the effect of the strong tip clearance vortex which does not move across the blade passage to the pressure surface, as is often observed for high stagger blading. These results may be significant for the design of HP compressors for industrial gas turbines.© 2008 ASME

33 citations

Journal ArticleDOI
01 Sep 2020-Energy
TL;DR: In this article, the energy performance and tip leakage vortex in a mixed flow pump as turbine (PAT) at pump mode is investigated by numerical method validated by experiment measurement with the blade rotation angle α increasing.

33 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Turbine
106.6K papers, 1M citations
79% related
Laminar flow
56K papers, 1.2M citations
77% related
Heat exchanger
184.2K papers, 1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202354
2022149
202189
2020111
2019116
201897