scispace - formally typeset
Search or ask a question
Topic

Tip clearance

About: Tip clearance is a research topic. Over the lifetime, 2637 publications have been published within this topic receiving 32671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the impact of the tip clearance when the same turbine has an unshrouded rotor.
Abstract: In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a “break-even clearance” at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the “offset loss”. This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model.Copyright © 2010 by ASME

28 citations

Journal ArticleDOI
TL;DR: In this paper, a single-stage transonic axial compressor was equipped with a casing treatment (CT), consisting of 3.5 axial slots per rotor pitch in order to investigate the predicted extension of the stall margin characteristics both numerically and experimentally.
Abstract: A single-stage transonic axial compressor was equipped with a casing treatment (CT), consisting of 3.5 axial slots per rotor pitch in order to investigate the predicted extension of the stall margin characteristics both numerically and experimentally. Contrary to most other studies the CT was designed especially accounting for an optimized optical access in the immediate vicinity of the CT, rather than giving maximum benefit in terms of stall margin extension. Part 1 of this two-part contribution describes the experimental investigation of the blade tip interaction with casing treatment using Particle image velocimetry (PIV). The nearly rectangular geometry of the CT cavities allowed a portion of it to be made of quartz glass with curvatures matching the casing. Thus the flow phenomena could be observed with essentially no disturbance caused by the optical access. Two periscope light sheet probes were specifically designed for this application to allow for precise alignment of the laser light sheet at three different radial positions in the rotor passage (87.5%, 95% and 99%). For the outermost radial position the light sheet probe was placed behind the rotor and aligned to pass the light sheet through the blade tip clearance. It was demonstrated that the PIV technique is capable of providing velocity information of high quality even in the tip clearance region of the rotor blades. The chosen type of smoke-based seeding with very small particles (about 0.5 μm in diameter) supported data evaluation with high spatial resolution, resulting in a final grid size of 0.5 × 0.5 mm. The PIV data base established in this project forms the basis for further detailed evaluations of the flow phenomena present in the transonic compressor stage with CT and allows validation of accompanying CFD calculations using the TRACE code. Based on the combined results of PIV measurements and CFD calculations of the same compressor and CT geometry a better understanding of the complex flow characteristics can be achieved, as detailed in Part 2 of this paper.Copyright © 2008 by ASME

28 citations

Journal ArticleDOI
01 Jun 2019
TL;DR: In this article, the effects of varying tip clearance widths on tip flows dynamics and main flows characteristics for an axial-flow pump were studied employing computational fluid dynamics method and an analysis was performed.
Abstract: The effects of varying tip clearance widths on tip flows dynamics and main flows characteristics for an axial-flow pump are studied employing computational fluid dynamics method. An analysis is pre...

28 citations

Journal ArticleDOI
Ye Dechao1, Duan Fajie1, Guo Haotian1, Li Yangzong1, Wang Kai1 
TL;DR: In this paper, a dual-beam fiber optic measurement system that can measure the tip timing and tip clearance simultaneously is described, which is insensitive to signal intensity variation caused by fluctuations in environmental conditions such as light source instability, contamination, and blade tip imperfection.
Abstract: Optimization and active control of the tip clearance of turbine blades has been identified as a key to improve fuel efficiency, reduce emission, and increase service life of the engine. However, reliable and real-time tip clearance measurement is difficult due to the adverse environmental conditions that are typically found in a turbine. We describe a dual-beam fiber optic measurement system that can measure the tip timing and tip clearance simultaneously. Because the tip timing information is used to calculate the tip clearance, the method is insensitive to the signal intensity variation caused by fluctuations in environmental conditions such as light source instability, contamination, and blade tip imperfection. The system was calibrated and tested using experimental rotors. The test results indicated a high resolution of 4.5 μm and measurement accuracy of ±20 μm over the rotation speed range of 2000 to 10,000 rpm.

28 citations

Journal ArticleDOI
TL;DR: In this article, the effect of tip pressure-side geometries on the aerodynamic performance near the tip gap was analyzed at three different cooling-hole arrangements (i.e., no film cooling, only tip holes, and both tip and pressure side holes) and two tip clearances.

28 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Turbine
106.6K papers, 1M citations
79% related
Laminar flow
56K papers, 1.2M citations
77% related
Heat exchanger
184.2K papers, 1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202354
2022149
202189
2020111
2019116
201897