scispace - formally typeset
Search or ask a question
Topic

Tip clearance

About: Tip clearance is a research topic. Over the lifetime, 2637 publications have been published within this topic receiving 32671 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the impact of tip clearance on the flow structure of tip leakage flow of axial flow fans with winglet and confirmed the existence of an optimal tip clearance which results in the maximum efficiency for an axial Flow fan with a shroud height measuring 30% of the axial chord length.
Abstract: This study is concerned with the improvement in efficiency of axial flow fans that are being used in numerous fields including outdoor units of air conditioners. The tip leakage flow occurring between a blade tip and shroud is one of the major losses in the axial flow fan. A well-known method used to control such tip leakage flow is locating winglet on the suction side of blade tips. Only a few articles have studied the impact of tip clearance on the flow structure of tip leakage flow of axial flow fans with winglet. In this study, the flow structure occurring on the blade tip due to the location of a winglet was analyzed. We confirm the existence of an optimal tip clearance which results in the maximum efficiency for an axial flow fan with a shroud height measuring 30% of the axial chord length.

23 citations

Journal ArticleDOI
O Domercq1, J-F Escuret1
14 Sep 2007
TL;DR: In this article, the effect of tip clearance variations on the matching of compressor stages was investigated. And the authors showed that three-dimensional multi-stage calculations can predict the effect on stage pressure-rise characteristics and on stage matching.
Abstract: Tip clearance flows have a major impact on both performance and stability of high-pressure compressors (HPC). The purpose of this paper is to underline how tip clearance variations affect the matching of compressor stages, hence modifying the efficiency and stall margin of the compressor. The practical application covered by the scope of this article is a modern highly loaded HPC dedicated to civil aircraft propulsion.The first part of the paper gives a very simple overview of stagewise matching in multistage compressors. Also, this part introduces the subject of the impact of tip clearance on stage matching.The second part of the paper illustrates the effect of increased rear block clearances on performance and stability, using some available experimental data. Finally, it is shown that three-dimensional multi-stage calculations can predict the effect of tip clearance variations on stage pressure-rise characteristics and on stage matching. This validated numerical tool therefore allows the aerody...

22 citations

Journal ArticleDOI
TL;DR: In this article, a 3D computational fluid dynamics (CFD) method was applied to simulate the unsteady flow in the air model turbine, and the simulation revealed that the rotating excitation mechanism observed in operating steam turbines is reproduced in the model turbine.
Abstract: The diversification of power generation methods within existing power networks has increased the requirement for operational flexibility of plants employing steam turbines. This has led to the situation where steam turbines may operate at very low volume flow conditions for extended periods of time. Under operating conditions where the volume flow through the last stage moving blades (LSMBs) of a low-pressure (LP) steam turbine falls below a certain limit, energy is returned to the working fluid rather than being extracted. This so-called “ventilation” phenomenon produces nonsynchronous aerodynamic excitation, which has the potential to lead to high dynamic blade loading. The aerodynamic excitation is often the result of a rotating phenomenon, with similarities to a rotating stall, which is well known in compressors. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. The analysis revealed that the rotating excitation mechanism observed in operating steam turbines is reproduced in the model turbine. A 3D computational fluid dynamics (CFD) method has been applied to simulate the unsteady flow in the air model turbine. The numerical model consists of the single stage modeled as a full annulus, along with the axial-radial diffuser. An unsteady CFD analysis has been performed with sufficient rotor revolutions to obtain globally periodic flow. The simulation reproduces the main characteristics of the phenomenon observed in the tests. The detailed insight into the dynamic flow field reveals information on the nature of the excitation mechanism. The calculations further indicate that the LSMB tip clearance flow has little or no effect on the characteristics of the mechanism for the case studied.

22 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantitatively estimate the tip clearance effect on the performance drop and the efficiency drop of a centrifugal compressor with six different tip clearances, and the additional entropy generation was modeled with all the kinetic energy of the tip leakage flow.
Abstract: Numerical simulations have been performed to investigate tip clearance effect on through-flow and performance of a centrifugal compressor which has the same configuration of impeller with six different tip clearances. Secondary flow and loss distribution have been surveyed to understand the flow mechanism due to the tip clearance. Tip leakage flow strongly interacts with mainstream flow and considerably changes the secondary flow and the loss distribution inside the impeller passage. A method has been described to quantitatively estimate the tip clearance effect on the performance drop and the efficiency drop. The tip clearance has caused specific work reduction and additional entropy generation. The former, which is called inviscid loss, is independent of any internal loss and the latter, which is called viscous loss, is dependent on every loss in the flow passage. Two components equally affected the performance drop as the tip clearances were small, while the efficiency drop was influenced by the viscous component alone. The additional entropy generation was modeled with all the kinetic energy of the tip leakage flow. Therefore, the present paper can provide how to quantitatively estimate the tip clearance effect on the performance and efficiency.

22 citations

Proceedings ArticleDOI
18 Sep 2014
TL;DR: In this article, robust design is used to redesign a highly loaded, transonic rotor blade with a desensitized tip clearance, where the tip gap is initially assumed to be uncertain from 0.5 to 0.85% span, and characterized by a beta distribution.
Abstract: Robust design is a multi-objective optimization framework for obtaining designs that perform favorably under uncertainty. In this paper robust design is used to redesign a highly loaded, transonic rotor blade with a desensitized tip clearance. The tip gap is initially assumed to be uncertain from 0.5 to 0.85% span, and characterized by a beta distribution. This uncertainty is then fed to a multi-objective optimizer and iterated upon. For each iteration of the optimizer, 3D-RANS computations for two different tip gaps are carried out. Once the simulations are complete, stochastic collocation is used to generate mean and variance in efficiency values, which form the two optimization objectives.Two such robust design studies are carried out: one using 3D blade engineering design parameters (axial sweep, tangential lean, re-cambering and skew) and the other utilizing suction and pressure side surface perturbations (with bumps). A design is selected from each Pareto front. These designs are robust: they exhibit a greater mean efficiency and lower variance in efficiency compared to the datum blade. Both robust designs were also observed to have significantly higher aft and reduced fore tip loading. This resulted in a weaker clearance vortex, wall jet and double leakage flow, all of which lead to reduced mixed-out losses. Interestingly, the robust designs did not show an increase in total pressure at the tip. It is believed that this is due to a trade-off between fore-loading the tip and obtaining a favorable total pressure rise and higher mixed-out losses, or aft-loading the tip, obtaining a lower pressure rise and lower mixed-out losses.Copyright © 2014 by Rolls-Royce plc

22 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
80% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Turbine
106.6K papers, 1M citations
79% related
Laminar flow
56K papers, 1.2M citations
77% related
Heat exchanger
184.2K papers, 1M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202354
2022149
202189
2020111
2019116
201897