scispace - formally typeset
Search or ask a question
Topic

Toad

About: Toad is a research topic. Over the lifetime, 1624 publications have been published within this topic receiving 28732 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that in toad bladder the increase in Jv induced by serosal hypertonicity is associated with IMP aggregation, and suggests that the pathway begins at a step subsequent not only to the generation of cAMP, but also beyond the involvement of the microtubule system.
Abstract: Colchicine, an agent which disrupts microtubules, inhibits the vasopressin (VP)-induced increase in water permeability as well as intramembranous particle (IMP) aggregation in the luminal plasma membrane of granular cells of toad urinary bladder. However, the hydroosmotic response induced by serosal hypertonicity is not affected by colchicine. The present investigation was initiated to establish whether serosal hypertonicity is associated with IMP aggregation and whether the aggregation, if present, is altered by colchicine. The experimental half of paired hemibladders from the toad, Bufo marinus, treated with 0.1 mM colchicine for 4 h prior to exposure to serosal mannitol (240 mM) demonstrated no significant difference in osmotic water How (Jv) (1.03 × 0.18 vs. 1.13 ± 0.22μl · min−1 · cm−2; p>0.20) when compared with control hemibladders. Similarly, comparison of control and colchicine-treated bladders revealed no difference in the number of IMP aggregation sites per area of membrane (17.8 ± 2.0 vs. 24.7 ± 3.5/100μm; p>0.10), the relative area of membrane occupied by these sites (0.30 ± 0.06 vs. 0.39 ± 0.07%; p>0.10) or the mean size of the aggregates (17.0 ± 1.4 vs. 15.8 ± 1.0 × 103 μm2; p > 0.20). These results indicate that in toad bladder the increase in Jv induced by serosal hypertonicity is associated with IMP aggregation. Secondly, an intact microtubule system is not required to induce the hydroosmotic or the aggregation responses. If, as has been proposed, the cellular actions of VP and serosal hypertonicity share a common pathway to bring about an increase in osmotic water permeability and cause IMP aggregation in the luminal membrane of the granular cell, the present results suggest that the pathway begins at a step subsequent not only to the generation of cAMP, but also beyond the involvement of the microtubule system.

8 citations

Journal ArticleDOI
TL;DR: The presence of one or more tachykinin receptor in the toad intestine is shown, with a strong positive correlation between the pD2 and pIC50 values for mammalian tachyKinins and analogues, but not for the non-mammalian tachy Kinins, which were all full agonists but variable binding competitors.
Abstract: In this study, we have used radioligand binding and functional techniques to investigate tachykinin receptors in the small intestine of the cane toad Bufo marinus. The radioligand [125I]Bolton-Hunter [Sar9,Met(O2)11]substance P (selective at mammalian NK-1 receptors) showed no specific binding. Specific binding of [125I]Bolton-Hunter substance P ([125I]BHSP) was saturable, of high affinity (Kd 0.3 nM) and was inhibited by SP (IC50 0.64 nM) > ranakinin scyliorhinin I $ [Sar9]-SP $ neurokinin B > SP(7–11) App[NH]p, indicating a G-protein coupled receptor. The order of potency of tachykinins and analogues in contracting the isolated lower small intestine was carassin (EC50 1.4 nM) > eledoisin SP(6–11) > scyliorhinin II $ neuropeptide γ > neurokinin B [Sar9]SP > SP(7–11). In both studies, the selective mammalian NK-1, NK-2 and NK-3 receptor agonists [Sar9,Met(O2)11]SP, [Lys5,MeLeu9,Nle10]NKA(4–10) and senktide were weak or ineffective. There was a strong positive correlation between the pD2 and pIC50 values for mammalian tachykinins and analogues (r=0.907), but not for the non-mammalian tachykinins, which were all full agonists but variable binding competitors. [Sar9,Met(O2)11]-SP(pD2 5.7) was approximately 25-fold less potent as an agonist than [Sar9]SP, which was itself 25-fold weaker than SP. Responses to SP were significantly reduced (n = 8, P<0.001) by the antagonist [D-Arg1,D-Trp7,9,Leu11]-SP (spantide; 1 μM). Highly selective NK-1 receptor antagonists including CP 99994 and GR 82334 (both 1 μM) were ineffective in both functional and binding studies. Tetrodotoxin (1 μM) did not inhibit contractile responses to SP, NKA and senktide. In summary, this study has shown the presence of one or more tachykinin receptor in the toad intestine. The binding site recognised by [125I]BHSP prefers SP and ranakinin. This toad “NK-1-like receptor” differs from the mammalian NK-1 receptor in having a low affinity for all mammalian NK-1 selective ligands, including antagonists. For some non-mammalian peptides, their high potency as contractile agonists relative to their poor binding affinity suggests the existence of other tachykinin receptors in the toad small intestine.

8 citations

Journal ArticleDOI
TL;DR: The potency of several neurohypophyseal hormonal peptides are determined as contractile and relaxing agents and a close correlation is found between their effects on the contractile responses of the toad bladder and the contractiles response of the rat uterus.

7 citations


Network Information
Related Topics (5)
Endoplasmic reticulum
48.3K papers, 2.4M citations
77% related
Secretion
24.8K papers, 1.2M citations
75% related
Membrane potential
18.7K papers, 939.6K citations
75% related
Cytoplasm
19.8K papers, 942.8K citations
74% related
Golgi apparatus
19.8K papers, 1M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202348
2022118
202112
202012
201913
20188