scispace - formally typeset
Search or ask a question
Topic

Toll-Like Receptor 9

About: Toll-Like Receptor 9 is a research topic. Over the lifetime, 437 publications have been published within this topic receiving 53125 citations.


Papers
More filters
Journal ArticleDOI
07 Dec 2000-Nature
TL;DR: It is shown that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9, and vertebrate immune systems appear to have evolved a specific Toll- like receptor that distinguishes bacterial DNA from self-DNA.
Abstract: DNA from bacteria has stimulatory effects on mammalian immune cells, which depend on the presence of unmethylated CpG dinucleotides in the bacterial DNA. In contrast, mammalian DNA has a low frequency of CpG dinucleotides, and these are mostly methylated; therefore, mammalian DNA does not have immuno-stimulatory activity. CpG DNA induces a strong T-helper-1-like inflammatory response. Accumulating evidence has revealed the therapeutic potential of CpG DNA as adjuvants for vaccination strategies for cancer, allergy and infectious diseases. Despite its promising clinical use, the molecular mechanism by which CpG DNA activates immune cells remains unclear. Here we show that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9. TLR9-deficient (TLR9-/-) mice did not show any response to CpG DNA, including proliferation of splenocytes, inflammatory cytokine production from macrophages and maturation of dendritic cells. TLR9-/- mice showed resistance to the lethal effect of CpG DNA without any elevation of serum pro-inflammatory cytokine levels. The in vivo CpG-DNA-mediated T-helper type-1 response was also abolished in TLR9-/- mice. Thus, vertebrate immune systems appear to have evolved a specific Toll-like receptor that distinguishes bacterial DNA from self-DNA.

6,188 citations

Journal ArticleDOI
06 Apr 1995-Nature
TL;DR: The potent immune activation by CpG oligon nucleotides has impli-cations for the design and interpretation of studies using 'antisense' oligonucleotides and points to possible new applications as adjuvants.
Abstract: Unmethylated CpG dinucleotides are more frequent in the genomes of bacteria and viruses than of vertebrates. We report here that bacterial DNA and synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides induce murine B cells to proliferate and secrete immunoglobulin in vitro and in vivo. This activation is enhanced by simultaneous signals delivered through the antigen receptor. Optimal B-cell activation requires a DNA motif in which an unmethylated CpG dinucleotide is flanked by two 5' purines and two 3' pyrimidines. Oligodeoxynucleotides containing this CpG motif induce more than 95% of all spleen B cells to enter the cell cycle. These data suggest a possible evolutionary link between immune defence based on the recognition of microbial DNA and the phenomenon of 'CpG suppression' in vertebrates. The potent immune activation by CpG oligonucleotides has implications for the design and interpretation of studies using 'antisense' oligonucleotides and points to possible new applications as adjuvants.

3,742 citations

Journal ArticleDOI
TL;DR: Oligodeoxynucleotides containing CpG ODN enhance the development of acquired immune responses for prophylactic and therapeutic vaccination and protect against lethal challenge with a wide variety of pathogens.
Abstract: Unmethylated CpG motifs are prevalent in bacterial but not vertebrate genomic DNAs. Oligodeoxynucleotides (ODN) containing CpG motifs activate host defense mechanisms leading to innate and acquired immune responses. The recognition of CpG motifs requires Toll-like receptor (TLR) 9, which triggers alterations in cellular redox balance and the induction of cell signaling pathways including the mitogen activated protein kinases (MAPKs) and NF kappa B. Cells that express TLR-9, which include plasmacytoid dendritic cells (PDCs) and B cells, produce Th1-like proinflammatory cytokines, interferons, and chemokines. Certain CpG motifs (CpG-A) are especially potent at activating NK cells and inducing IFN-alpha production by PDCs, while other motifs (CpG-B) are especially potent B cell activators. CpG-induced activation of innate immunity protects against lethal challenge with a wide variety of pathogens, and has therapeutic activity in murine models of cancer and allergy. CpG ODN also enhance the development of acquired immune responses for prophylactic and therapeutic vaccination.

2,557 citations

Journal ArticleDOI
TL;DR: Evidence is provided that PDC and B cells, but not monocytes, NK cells, or T cells, are primary targets of CpG ODN in peripheral blood.
Abstract: The Toll-like receptor (TLR)9 is critical for the recognition of immunostimulatory CpG motifs but may cooperate with other TLRs. We analyzed TLR1-10 mRNA expression by using quantitative real-time PCR in highly purified subsets of human PBMC and determined the sensitivity of these subsets to CpG oligodeoxynucleotides (ODN). TLR1 and TLR6 were expressed in all cell types examined. TLR10 was highly expressed in B cells and weakly expressed in plasmacytoid dendritic cells (PDC). High expression of TLR2 was characteristic for monocytes. PDC and B cells expressed marked levels of TLR7 and TLR9 and were directly sensitive to CpG ODN. In CpG ODN-stimulated PDC and B cells, TLR9 expression rapidly decreased, as opposed to TLR7, which was up-regulated in PDC and decreased in B cells. In monocytes, NK cells, and T cells, TLR7 was absent. Despite low expression of TLR9, monocytes, NK cells, and T cells did not respond to CpG ODN in the absence of PDC but were activated in the presence of PDC. In conclusion, our studies provide evidence that PDC and B cells, but not monocytes, NK cells, or T cells, are primary targets of CpG ODN in peripheral blood. The characteristic expression pattern of TLR1-10 in cellular subsets of human PBMC is consistent with the concept that TLR9 is essential in the recognition of CpG ODN in PDC and B cells. In addition, selective regulation of TLR7 expression in PDC and B cells by CpG ODN revealed TLR7 as a candidate TLR potentially involved in modulating the recognition of CpG motifs.

2,012 citations

Journal ArticleDOI
TL;DR: It is shown that human TLR9 expression in human immune cells correlates with responsiveness to bacterial deoxycytidylate-phosphate-deoxyguanylate (CpG)-DNA, and data suggest that hTLR9 conveys CpG-DNA responsiveness to human cells by directly engaging immunostimulating Cpg-DNA.
Abstract: The Toll-like receptor (TLR) family consists of phylogenetically conserved transmembrane proteins, which function as mediators of innate immunity for recognition of pathogen-derived ligands and subsequent cell activation via the Toll/IL-1R signal pathway. Here, we show that human TLR9 (hTLR9) expression in human immune cells correlates with responsiveness to bacterial deoxycytidylate-phosphate-deoxyguanylate (CpG)-DNA. Notably “gain of function” to immunostimulatory CpG-DNA is achieved by expressing TLR9 in human nonresponder cells. Transfection of either human or murine TLR9 conferred responsiveness in a CD14- and MD2-independent manner, yet required species-specific CpG-DNA motifs for initiation of the Toll/IL-1R signal pathway via MyD88. The optimal CpG motif for hTLR9 was GTCGTT, whereas the optimal murine sequence was GACGTT. Overall, these data suggest that hTLR9 conveys CpG-DNA responsiveness to human cells by directly engaging immunostimulating CpG-DNA.

1,545 citations


Network Information
Related Topics (5)
T cell
109.5K papers, 5.5M citations
83% related
Immune system
182.8K papers, 7.9M citations
83% related
Cell culture
133.3K papers, 5.3M citations
80% related
Antigen
170.2K papers, 6.9M citations
79% related
Receptor
159.3K papers, 8.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202216
20213
202011
201915
20188