scispace - formally typeset
Search or ask a question
Topic

Tone mapping

About: Tone mapping is a research topic. Over the lifetime, 1713 publications have been published within this topic receiving 48490 citations.


Papers
More filters
Proceedings ArticleDOI
25 Jul 2011
TL;DR: This paper shows state-of-the-art edge-aware processing using standard Laplacian pyramids, and proposes a set of image filters to achieve edge-preserving smoothing, detail enhancement, tone mapping, and inverse tone mapping.
Abstract: The Laplacian pyramid is ubiquitous for decomposing images into multiple scales and is widely used for image analysis. However, because it is constructed with spatially invariant Gaussian kernels, the Laplacian pyramid is widely believed as being unable to represent edges well and as being ill-suited for edge-aware operations such as edge-preserving smoothing and tone mapping. To tackle these tasks, a wealth of alternative techniques and representations have been proposed, e.g., anisotropic diffusion, neighborhood filtering, and specialized wavelet bases. While these methods have demonstrated successful results, they come at the price of additional complexity, often accompanied by higher computational cost or the need to post-process the generated results. In this paper, we show state-of-the-art edge-aware processing using standard Laplacian pyramids. We characterize edges with a simple threshold on pixel values that allows us to differentiate large-scale edges from small-scale details. Building upon this result, we propose a set of image filters to achieve edge-preserving smoothing, detail enhancement, tone mapping, and inverse tone mapping. The advantage of our approach is its simplicity and flexibility, relying only on simple point-wise nonlinearities and small Gaussian convolutions; no optimization or post-processing is required. As we demonstrate, our method produces consistently high-quality results, without degrading edges or introducing halos.

445 citations

Proceedings ArticleDOI
24 Oct 1999
TL;DR: An approach for improving the effective dynamic range of cameras by using multiple photographs of the same scene taken with different exposure times, which enables the photographer to accurately capture scenes that contain a high dynamic range, i.e., scenes that have both very bright and very dark regions.
Abstract: This paper presents an approach for improving the effective dynamic range of cameras by using multiple photographs of the same scene taken with different exposure times. Using this method enables the photographer to accurately capture scenes that contain a high dynamic range, i.e., scenes that have both very bright and very dark regions. The approach requires an initial calibration, where the camera response function is determined. Once the response function for a camera is known, high dynamic range images can be computed easily. The high dynamic range output image consists of a weighted average of the multiply-exposed input images, and thus contains information captured by each of the input images. From a computational standpoint, the proposed algorithm is very efficient, and requires little processing time to determine a solution.

427 citations

Book
21 Nov 2005
TL;DR: This landmark book is the first to describe HDRI technology in its entirety and covers a wide-range of topics, from capture devices to tone reproduction and image-based lighting, leading to an unparalleled visual experience.
Abstract: This landmark book is the first to describe HDRI technology in its entirety and covers a wide-range of topics, from capture devices to tone reproduction and image-based lighting. The techniques described enable you to produce images that have a dynamic range much closer to that found in the real world, leading to an unparalleled visual experience. As both an introduction to the field and an authoritative technical reference, it is essential to anyone working with images, whether in computer graphics, film, video, photography, or lighting design. New material includes chapters on High Dynamic Range Video Encoding, High Dynamic Range Image Encoding, and High Dynammic Range Display Devices Written by the inventors and initial implementors of High Dynamic Range Imaging Covers the basic concepts (including just enough about human vision to explain why HDR images are necessary), image capture, image encoding, file formats, display techniques, tone mapping for lower dynamic range display, and the use of HDR images and calculations in 3D rendering Range and depth of coverage is good for the knowledgeable researcher as well as those who are just starting to learn about High Dynamic Range imaging Table of Contents Introduction; Light and Color; HDR Image Encodings; HDR Video Encodings; HDR Image and Video Capture; Display Devices; The Human Visual System and HDR Tone Mapping; Spatial Tone Reproduction; Frequency Domain and Gradient Domain Tone Reproduction; Inverse Tone Reproduction; Visible Difference Predictors; Image-Based Lighting.

417 citations

Journal ArticleDOI
TL;DR: The novelties of the method is first to use an adaptive filter, whose shape follows the image high-contrast edges, thus reducing halo artifacts common to other methods, and only the luminance channel is processed.
Abstract: We propose a new method to render high dynamic range images that models global and local adaptation of the human visual system. Our method is based on the center-surround Retinex model. The novelties of our method is first to use an adaptive filter, whose shape follows the image high-contrast edges, thus reducing halo artifacts common to other methods. Second, only the luminance channel is processed, which is defined by the first component of a principal component analysis. Principal component analysis provides orthogonality between channels and thus reduces the chromatic changes caused by the modification of luminance. We show that our method efficiently renders high dynamic range images and we compare our results with the current state of the art

414 citations

Journal ArticleDOI
01 Aug 2008
TL;DR: This work proposes a tone mapping operator that can minimize visible contrast distortions for a range of output devices, ranging from e-paper to HDR displays, and shows that the problem can be solved very efficiently by employing higher order image statistics and quadratic programming.
Abstract: We propose a tone mapping operator that can minimize visible contrast distortions for a range of output devices, ranging from e-paper to HDR displays. The operator weights contrast distortions according to their visibility predicted by the model of the human visual system. The distortions are minimized given a display model that enforces constraints on the solution. We show that the problem can be solved very efficiently by employing higher order image statistics and quadratic programming. Our tone mapping technique can adjust image or video content for optimum contrast visibility taking into account ambient illumination and display characteristics. We discuss the differences between our method and previous approaches to the tone mapping problem.

410 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
86% related
Object detection
46.1K papers, 1.3M citations
86% related
Feature extraction
111.8K papers, 2.1M citations
84% related
Image segmentation
79.6K papers, 1.8M citations
84% related
Image processing
229.9K papers, 3.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202274
202167
202089
2019120
2018119