scispace - formally typeset
Search or ask a question
Topic

Tone mapping

About: Tone mapping is a research topic. Over the lifetime, 1713 publications have been published within this topic receiving 48490 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The result is a fast and practical algorithm for general use with intuitive user parameters that control intensity, contrast, and level of chromatic adaptation, respectively.
Abstract: A common task in computer graphics is the mapping of digital high dynamic range images to low dynamic range display devices such as monitors and printers. This task is similar to the adaptation processes which occur in the human visual system. Physiological evidence suggests that adaptation already occurs in the photoreceptors, leading to a straightforward model that can be easily adapted for tone reproduction. The result is a fast and practical algorithm for general use with intuitive user parameters that control intensity, contrast, and level of chromatic adaptation, respectively.

401 citations

Proceedings ArticleDOI
26 Jul 2002
TL;DR: This work takes as an input a high dynamic range image and maps it into a limited range of luminance values reproducible by a display device and follows functionality of HVS without attempting to construct its sophisticated model.
Abstract: A new method is presented that takes as an input a high dynamic range image and maps it into a limited range of luminance values reproducible by a display device. There is significant evidence that a similar operation is performed by early stages of human visual system (HVS). Our approach follows functionality of HVS without attempting to construct its sophisticated model. The operation is performed in three steps. First, we estimate local adaptation luminance at each point in the image. Then, a simple function is applied to these values to compress them into the required display range. Since important image details can be lost during this process, we then re-introduce details in the final pass over the image.

380 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: In this paper, the authors propose a technique to "unprocess" images by inverting each step of an image processing pipeline, thereby allowing them to synthesize realistic raw sensor measurements from commonly available Internet photos.
Abstract: Machine learning techniques work best when the data used for training resembles the data used for evaluation. This holds true for learned single-image denoising algorithms, which are applied to real raw camera sensor readings but, due to practical constraints, are often trained on synthetic image data. Though it is understood that generalizing from synthetic to real images requires careful consideration of the noise properties of camera sensors, the other aspects of an image processing pipeline (such as gain, color correction, and tone mapping) are often overlooked, despite their significant effect on how raw measurements are transformed into finished images. To address this, we present a technique to “unprocess” images by inverting each step of an image processing pipeline, thereby allowing us to synthesize realistic raw sensor measurements from commonly available Internet photos. We additionally model the relevant components of an image processing pipeline when evaluating our loss function, which allows training to be aware of all relevant photometric processing that will occur after denoising. By unprocessing and processing training data and model outputs in this way, we are able to train a simple convolutional neural network that has 14%-38% lower error rates and is 9×-18× faster than the previous state of the art on the Darmstadt Noise Dataset, and generalizes to sensors outside of that dataset as well.

369 citations

Journal ArticleDOI
01 Jul 2006
TL;DR: The user's sparse set of constraints are interpolated to the entire image using an edge-preserving energy minimization method designed to prevent the propagation of tonal adjustments to regions of significantly different luminance.
Abstract: This paper presents a new interactive tool for making local adjustments of tonal values and other visual parameters in an image. Rather than carefully selecting regions or hand-painting layer masks, the user quickly indicates regions of interest by drawing a few simple brush strokes and then uses sliders to adjust the brightness, contrast, and other parameters in these regions. The effects of the user's sparse set of constraints are interpolated to the entire image using an edge-preserving energy minimization method designed to prevent the propagation of tonal adjustments to regions of significantly different luminance. The resulting system is suitable for adjusting ordinary and high dynamic range images, and provides the user with much more creative control than existing tone mapping algorithms. Our tool is also able to produce a tone mapping automatically, which may serve as a basis for further local adjustments, if so desired. The constraint propagation approach developed in this paper is a general one, and may also be used to interactively control a variety of other adjustments commonly performed in the digital darkroom.

359 citations

Journal ArticleDOI
TL;DR: Evaluation of the model proved iCAM06 to have consistently good HDR rendering performance in both preference and accuracy making it a good candidate for a general-purpose tone-mapping operator with further potential applications to a wide-range of image appearance research and practice.

356 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
86% related
Object detection
46.1K papers, 1.3M citations
86% related
Feature extraction
111.8K papers, 2.1M citations
84% related
Image segmentation
79.6K papers, 1.8M citations
84% related
Image processing
229.9K papers, 3.5M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202274
202167
202089
2019120
2018119