scispace - formally typeset
Search or ask a question
Topic

Top quark

About: Top quark is a research topic. Over the lifetime, 9961 publications have been published within this topic receiving 237010 citations. The topic is also known as: t quark & truth quark.


Papers
More filters
Journal ArticleDOI
Koji Nakamura1, K. Hagiwara, Ken Ichi Hikasa2, Hitoshi Murayama3  +180 moreInstitutions (92)
TL;DR: In this article, a biennial review summarizes much of particle physics using data from previous editions, plus 2158 new measurements from 551 papers, they list, evaluate and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology.

2,788 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the present status of QCD corrections to weak decays beyond the leading-logarithmic approximation, including particle-antiparticle mixing and rare and $\mathrm{CP}$-violating decays.
Abstract: We review the present status of QCD corrections to weak decays beyond the leading-logarithmic approximation, including particle-antiparticle mixing and rare and $\mathrm{CP}$-violating decays. After presenting the basic formalism for these calculations we discuss in detail the effective Hamiltonians of all decays for which the next-to-leading-order corrections are known. Subsequently, we present the phenomenological implications of these calculations. The values of various parameters are updated, in particular the mass of the newly discovered top quark. One of the central issues in this review are the theoretical uncertainties related to renormalization-scale ambiguities, which are substantially reduced by including next-to-leading-order corrections. The impact of this theoretical improvement on the determination of the Cabibbo-Kobayashi-Maskawa matrix is then illustrated. [S0034-6861(96)00304-2]

2,277 citations

Journal ArticleDOI
TL;DR: In this article, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test is presented, which is based on LO, NLO and NNLO QCD theory and also includes electroweak corrections.
Abstract: We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

2,028 citations

Journal ArticleDOI
TL;DR: In this paper, the generalized Cabibbo mixing angle connecting two types of quarks is predicted to be given order of magnitude wise by the square root of the corresponding quark mass ratio.

1,593 citations

Journal ArticleDOI
TL;DR: In this article, a gauge-invariant decomposition of the nucleon spin into quark helicity, quark orbital, and gluon contributions is proposed, and the total quark contribution is measured through virtual Compton scattering in a special kinematic region where single quark scattering dominates.
Abstract: I introduce a gauge-invariant decomposition of the nucleon spin into quark helicity, quark orbital, and gluon contributions. The total quark (and hence the quark orbital) contribution is shown to be measurable through virtual Compton scattering in a special kinematic region where single quark scattering dominates. This deeply virtual Compton scattering has much potential to unravel the quark and gluon structure of the nucleon.

1,434 citations


Network Information
Related Topics (5)
Quantum chromodynamics
47.1K papers, 1.2M citations
97% related
Quark
43.3K papers, 951K citations
97% related
Higgs boson
33.6K papers, 961.7K citations
96% related
Neutrino
45.9K papers, 1M citations
94% related
Supersymmetry
29.7K papers, 1.1M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023100
2022282
2021223
2020214
2019335
2018352