scispace - formally typeset
Search or ask a question
Topic

Topic model

About: Topic model is a research topic. Over the lifetime, 8870 publications have been published within this topic receiving 244741 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Abstract: We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.

30,570 citations

Proceedings Article
Quoc V. Le1, Tomas Mikolov1
21 Jun 2014
TL;DR: Paragraph Vector is an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents, and its construction gives the algorithm the potential to overcome the weaknesses of bag-of-words models.
Abstract: Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperforms bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.

7,119 citations

Journal ArticleDOI
TL;DR: A generative model for documents is described, introduced by Blei, Ng, and Jordan, and a Markov chain Monte Carlo algorithm is presented for inference in this model, which is used to analyze abstracts from PNAS by using Bayesian model selection to establish the number of topics.
Abstract: A first step in identifying the content of a document is determining which topics that document addresses. We describe a generative model for documents, introduced by Blei, Ng, and Jordan [Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003) J. Machine Learn. Res. 3, 993-1022], in which each document is generated by choosing a distribution over topics and then choosing each word in the document from a topic selected according to this distribution. We then present a Markov chain Monte Carlo algorithm for inference in this model. We use this algorithm to analyze abstracts from PNAS by using Bayesian model selection to establish the number of topics. We show that the extracted topics capture meaningful structure in the data, consistent with the class designations provided by the authors of the articles, and outline further applications of this analysis, including identifying “hot topics” by examining temporal dynamics and tagging abstracts to illustrate semantic content.

5,680 citations

Journal ArticleDOI
01 Aug 1999
TL;DR: Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data.
Abstract: Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized model is able to deal with domain{specific synonymy as well as with polysemous words. In contrast to standard Latent Semantic Indexing (LSI) by Singular Value Decomposition, the probabilistic variant has a solid statistical foundation and defines a proper generative data model. Retrieval experiments on a number of test collections indicate substantial performance gains over direct term matching methods as well as over LSI. In particular, the combination of models with different dimensionalities has proven to be advantageous.

4,577 citations

Journal ArticleDOI
TL;DR: Surveying a suite of algorithms that offer a solution to managing large document archives suggests they are well-suited to handle large amounts of data.
Abstract: Probabilistic topic modeling provides a suite of tools for the unsupervised analysis of large collections of documents. Topic modeling algorithms can uncover the underlying themes of a collection and decompose its documents according to those themes. This analysis can be used for corpus exploration, document search, and a variety of prediction problems.In this tutorial, I will review the state-of-the-art in probabilistic topic models. I will describe the three components of topic modeling:(1) Topic modeling assumptions(2) Algorithms for computing with topic models(3) Applications of topic modelsIn (1), I will describe latent Dirichlet allocation (LDA), which is one of the simplest topic models, and then describe a variety of ways that we can build on it. These include dynamic topic models, correlated topic models, supervised topic models, author-topic models, bursty topic models, Bayesian nonparametric topic models, and others. I will also discuss some of the fundamental statistical ideas that are used in building topic models, such as distributions on the simplex, hierarchical Bayesian modeling, and models of mixed-membership.In (2), I will review how we compute with topic models. I will describe approximate posterior inference for directed graphical models using both sampling and variational inference, and I will discuss the practical issues and pitfalls in developing these algorithms for topic models. Finally, I will describe some of our most recent work on building algorithms that can scale to millions of documents and documents arriving in a stream.In (3), I will discuss applications of topic models. These include applications to images, music, social networks, and other data in which we hope to uncover hidden patterns. I will describe some of our recent work on adapting topic modeling algorithms to collaborative filtering, legislative modeling, and bibliometrics without citations.Finally, I will discuss some future directions and open research problems in topic models.

4,529 citations


Network Information
Related Topics (5)
Graph (abstract data type)
69.9K papers, 1.2M citations
86% related
Social network
42.9K papers, 1.5M citations
86% related
Social media
76K papers, 1.1M citations
85% related
Unsupervised learning
22.7K papers, 1M citations
85% related
Cluster analysis
146.5K papers, 2.9M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023201
2022552
2021779
2020865
2019927
2018901