scispace - formally typeset
Search or ask a question
Topic

Topographic Wetness Index

About: Topographic Wetness Index is a research topic. Over the lifetime, 848 publications have been published within this topic receiving 38079 citations.


Papers
More filters
01 Jan 1979
TL;DR: In this paper, a hydrological forecasting model is presented that attempts to combine the important distributed effects of channel network topology and dynamic contributing areas with the advantages of simple lumped parameter basin models.
Abstract: A hydrological forecasting model is presented that attempts to combine the important distributed effects of channel network topology and dynamic contributing areas with the advantages of simple lumped parameter basin models. Quick response flow is predicted from a storage/contributing area relationship derived analytically from the topographic structure of a unit within a basin. Average soil water response is represented by a constant leakage infiltration store and an exponential subsurface water store. A simple non-linear routing procedure related to the link frequency distribution of the channel network completes the model and allows distinct basin sub-units, such as headwater and sideslope areas to be modelled separately. The model parameters are physically based in the sense that they may be determined directly by measurement and the model may be used at ungauged sites. Procedures for applying the model and tests with data from the Crimple Beck basin are described. Using only measured and estimated parameter values, without optimization, the model makes satisfactory predictions of basin response. The modular form of the model structure should allow application over a range of small and medium sized basins while retaining the possibility of including more complex model components when suitable data are available.

6,158 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe elevation data sources, digital elevation model structures, and the analysis of digital elevation data for hydrological, geomorphological, and biological applications.
Abstract: The topography of a catchment has a major impact on the hydrological, geomorphological. and biological processes active in the landscape. The spatial distribution of topographic attributes can often be used as an indirect measure of the spatial variability of these processes and allows them to be mapped using relatively simple techniques. Many geographic information systems are being developed that store topographic information as the primary data for analysing water resource and biological problems. Furthermore, topography can be used to develop more physically realistic structures for hydrologic and water quality models that directly account for the impact of topography on the hydrology. Digital elevation models are the primary data used in the analysis of catchment topography. We describe elevation data sources, digital elevation model structures, and the analysis of digital elevation data for hydrological, geomorphological, and biological applications. Some hydrologic models that make use of digital representations of topography are also considered.

2,855 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared a number of calculation methods for TWI and evaluated them in terms of their correlation with the following measured variables: vascular plant species richness, soil pH, groundwater level, soil moisture, and a constructed wetness degree.
Abstract: . The topographic wetness index (TWI, ln(a/tanβ)), which combines local upslope contributing area and slope, is commonly used to quantify topographic control on hydrological processes. Methods of computing this index differ primarily in the way the upslope contributing area is calculated. In this study we compared a number of calculation methods for TWI and evaluated them in terms of their correlation with the following measured variables: vascular plant species richness, soil pH, groundwater level, soil moisture, and a constructed wetness degree. The TWI was calculated by varying six parameters affecting the distribution of accumulated area among downslope cells and by varying the way the slope was calculated. All possible combinations of these parameters were calculated for two separate boreal forest sites in northern Sweden. We did not find a calculation method that performed best for all measured variables; rather the best methods seemed to be variable and site specific. However, we were able to identify some general characteristics of the best methods for different groups of measured variables. The results provide guiding principles for choosing the best method for estimating species richness, soil pH, groundwater level, and soil moisture by the TWI derived from digital elevation models.

741 citations

Journal ArticleDOI
TL;DR: The results obtained in this study showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained.

741 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used fuzzy logic and analytical hierarchy process (AHP) models to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran.
Abstract: The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70 % (55 landslides) for training the models and the remaining 30 % (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7 %) performed better than AHP (81.1 %) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.

732 citations


Network Information
Related Topics (5)
Surface runoff
45.1K papers, 1.1M citations
83% related
Soil water
97.8K papers, 2.9M citations
83% related
Land use
57K papers, 1.1M citations
81% related
Soil organic matter
39.8K papers, 1.5M citations
79% related
Vegetation
49.2K papers, 1.4M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023103
2022177
2021119
202093
2019126
201868