Topic
Topological string theory
About: Topological string theory is a(n) research topic. Over the lifetime, 1206 publication(s) have been published within this topic receiving 54758 citation(s).
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: A twisted version of four dimensional supersymmetric gauge theory is formulated in this paper, which refines a nonrelativistic treatment by Atiyah and appears to underlie many recent developments in topology of low dimensional manifolds; the Donaldson polynomial invariants of four manifolds and the Floer groups of three manifolds appear naturally.
Abstract: A twisted version of four dimensional supersymmetric gauge theory is formulated. The model, which refines a nonrelativistic treatment by Atiyah, appears to underlie many recent developments in topology of low dimensional manifolds; the Donaldson polynomial invariants of four manifolds and the Floer groups of three manifolds appear naturally. The model may also be interesting from a physical viewpoint; it is in a sense a generally covariant quantum field theory, albeit one in which general covariance is unbroken, there are no gravitons, and the only excitations are topological.
2,425 citations
[...]
TL;DR: In this paper, the authors developed techniques to compute higher loop string amplitudes for twisted N = 2 theories with ε = 3 (i.e. the critical case) by exploiting the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured by a master anomaly equation.
Abstract: We develop techniques to compute higher loop string amplitudes for twistedN=2 theories withĉ=3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particular realization of theN=2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira-Spencer theory, which may be viewed as the closed string analog of the Chern-Simons theory. Using the mirror map this leads to computation of the ‘number’ of holomorphic curves of higher genus curves in Calabi-Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the correspondingN=2 theory. Relations withc=1 strings are also pointed out.
1,574 citations
[...]
TL;DR: In this paper, it was shown that string theory on AdS5 × X5 can be described by a certain N = 1 supersymmetric gauge theory, which we describe in detail.
Abstract: Just as parallel threebranes on a smooth manifold are related to string theory on AdS 5 × S 5 , parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that string theory on AdS5 × X5 can be described by a certain N = 1 supersymmetric gauge theory which we describe in detail.
1,568 citations
[...]
TL;DR: A variant of the usual supersymmetric nonlinear sigma model is described in this article, governing maps from a Riemann surface to an arbitrary almost complex manifold, which possesses a fermionic BRST-like symmetry, conserved for arbitrary Σ, and obeying Q 2 = 0.
Abstract: A variant of the usual supersymmetric nonlinear sigma model is described, governing maps from a Riemann surfaceΣ to an arbitrary almost complex manifoldM. It possesses a fermionic BRST-like symmetry, conserved for arbitraryΣ, and obeyingQ
2=0. In a suitable version, the quantum ground states are the 1+1 dimensional Floer groups. The correlation functions of the BRST-invariant operators are invariants (depending only on the homotopy type of the almost complex structure ofM) similar to those that have entered in recent work of Gromov on symplectic geometry. The model can be coupled to dynamical gravitational or gauge fields while preserving the fermionic symmetry; some observations by Atiyah suggest that the latter coupling may be related to the Jones polynomial of knot theory. From the point of view of string theory, the main novelty of this type of sigma model is that the graviton vertex operator is a BRST commutator. Thus, models of this type may correspond to a realization at the level of string theory of an unbroken phase of quantum gravity.
1,115 citations
[...]
TL;DR: The 't Hooft expansion of SU(N) Chern-Simons theory was shown to be exactly dual to topological closed string theory on the blow up of the conifold geometry in this paper.
Abstract: The 't Hooft expansion of SU(N) Chern-Simons theory on $S^3$ is proposed to be exactly dual to the topological closed string theory on the $S^2$ blow up of the conifold geometry. The $B$-field on the $S^2$ has magnitude $Ng_s=\lambda$, the 't Hooft coupling. We are able to make a number of checks, such as finding exact agreement at the level of the partition function computed on {\it both} sides for arbitrary $\lambda$ and to all orders in 1/N. Moreover, it seems possible to derive this correspondence from a linear sigma model description of the conifold. We propose a picture whereby a perturbative D-brane description, in terms of holes in the closed string worldsheet, arises automatically from the coexistence of two phases in the underlying U(1) gauge theory. This approach holds promise for a derivation of the AdS/CFT correspondence.
952 citations