Topic
Topology (electrical circuits)
About: Topology (electrical circuits) is a(n) research topic. Over the lifetime, 33316 publication(s) have been published within this topic receiving 397651 citation(s). The topic is also known as: topology.
...read more
Papers
More
Open access•Proceedings Article•
01 Jan 1989-
Abstract: Cascade-Correlation is a new architecture and supervised learning algorithm for artificial neural networks. Instead of just adjusting the weights in a network of fixed topology. Cascade-Correlation begins with a minimal network, then automatically trains and adds new hidden units one by one, creating a multi-layer structure. Once a new hidden unit has been added to the network, its input-side weights are frozen. This unit then becomes a permanent feature-detector in the network, available for producing outputs or for creating other, more complex feature detectors. The Cascade-Correlation architecture has several advantages over existing algorithms: it learns very quickly, the network determines its own size and topology, it retains the structures it has built even if the training set changes, and it requires no back-propagation of error signals through the connections of the network.
...read more
Topics: Network topology (62%), Network simulation (61%), Artificial neural network (54%) ...read more
2,646 Citations
23 Jun 2003-
Abstract: This paper presents a new multilevel converter topology suitable for very high voltage applications, especially network interties in power generation and transmission. The fundamental concept and the applied control scheme is introduced. Simulation results of a 36 MW-network intertie illustrate the efficient operating characteristics. A suitable structure of the converter-control is proposed.
...read more
Topics: Topology (electrical circuits) (56%), Network topology (54%), Cascade converter (54%) ...read more
2,517 Citations
Abstract: This paper presents a technology review of voltage-source-converter topologies for industrial medium-voltage drives. In this highly active area, different converter topologies and circuits have found their application in the market. This paper covers the high-power voltage-source inverter and the most used multilevel-inverter topologies, including the neutral-point-clamped, cascaded H-bridge, and flying-capacitor converters. This paper presents the operating principle of each topology and a review of the most relevant modulation methods, focused mainly on those used by industry. In addition, the latest advances and future trends of the technology are discussed. It is concluded that the topology and modulation-method selection are closely related to each particular application, leaving a space on the market for all the different solutions, depending on their unique features and limitations like power or voltage level, dynamic performance, reliability, costs, and other technical specifications.
...read more
Topics: Voltage source (53%), Topology (electrical circuits) (52%), Network topology (52%)
2,051 Citations
26 Mar 2000-
Abstract: We consider the problem of adjusting the transmit powers of nodes in a multihop wireless network (also called an ad hoc network) to create a desired topology. We formulate it as a constrained optimization problem with two constraints-connectivity and biconnectivity, and one optimization objective-maximum power used. We present two centralized algorithms for use in static networks, and prove their optimality. For mobile networks, we present two distributed heuristics that adaptively adjust node transmit powers in response to topological changes and attempt to maintain a connected topology using minimum power. We analyze the throughput, delay, and power consumption of our algorithms using a prototype software implementation, an emulation of a power-controllable radio, and a detailed channel model. Our results show that the performance of multihop wireless networks in practice can be substantially increased with topology control.
...read more
Topics: Logical topology (64%), Network topology (61%), Power control (61%) ...read more
1,719 Citations
Abstract: The paper presents a compact Matlab implementation of a topology optimization code for compliance minimization of statically loaded structures. The total number of Matlab input lines is 99 including optimizer and Finite Element subroutine. The 99 lines are divided into 36 lines for the main program, 12 lines for the Optimality Criteria based optimizer, 16 lines for a mesh-independency filter and 35 lines for the finite element code. In fact, excluding comment lines and lines associated with output and finite element analysis, it is shown that only 49 Matlab input lines are required for solving a well-posed topology optimization problem. By adding three additional lines, the program can solve problems with multiple load cases. The code is intended for educational purposes. The complete Matlab code is given in the Appendix and can be down-loaded from the web-site http://www.topopt.dtu.dk.
...read more
Topics: Topology optimization (54%), Line (geometry) (53%), Topology (electrical circuits) (51%) ...read more
1,604 Citations