scispace - formally typeset
Search or ask a question
Topic

Topology (electrical circuits)

About: Topology (electrical circuits) is a research topic. Over the lifetime, 33316 publications have been published within this topic receiving 397651 citations. The topic is also known as: topology.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed inverter topology for open-end winding induction-motor drive can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor-fed H-bridge cell, to increase the reliability of the system.
Abstract: In this paper, a new five-level inverter topology for open-end winding induction-motor (IM) drive is proposed. The open-end winding IM is fed from one end with a two-level inverter in series with a capacitor-fed H-bridge cell, while the other end is connected to a conventional two-level inverter. The combined inverter system produces voltage space-vector locations identical to that of a conventional five-level inverter. A total of 2744 space-vector combinations are distributed over 61 space-vector locations in the proposed scheme. With such a high number of switching state redundancies, it is possible to balance the H-bridge capacitor voltages under all operating conditions including overmodulation region. In addition to that, the proposed topology eliminates 18 clamping diodes having different voltage ratings compared with the neutral point clamped inverter. On the other hand, it requires only one capacitor bank per phase, whereas the flying-capacitor scheme for a five-level topology requires more than one capacitor bank per phase. The proposed inverter topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor-fed H-bridge cell. This will increase the reliability of the system. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.

109 citations

Journal ArticleDOI
07 Aug 2002
TL;DR: In this paper, the topology and control of a distribution static compensator (DSTATCOM) that can be operated flexibly in the voltage or current control mode are discussed, irrespective of unbalance and harmonic distortions in load currents or source voltages.
Abstract: The topology and control are discussed of a distribution static compensator (DSTATCOM) that can be operated flexibly in the voltage or current control mode. In the voltage control mode, the DSTATCOM can force the voltage of a distribution bus to be balanced sinusoids. In the current control mode, it can cancel distortion caused by the load, such that current drawn by the compensated load is pure balanced sinusoid. Both these objectives are achieved, irrespective of unbalance and harmonic distortions in load currents or source voltages. The chosen DSTATCOM topology includes three single-phase voltage source inverters connected in parallel to a filter-capacitor, which allows the high-frequency component of the current to pass. A switching control scheme is proposed, and its suitability is proved for this problem. The proposed scheme is verified using computer simulation studies.

108 citations

Proceedings ArticleDOI
03 Oct 1999
TL;DR: In this article, a converter topology with a minimum number of power devices and control implementations to facilitate the pulsation-free force control of the linear switched reluctance machines is investigated for the first time.
Abstract: The converter topology with a minimum number of power devices and control implementations to facilitate the pulsation-free force control of the linear switched reluctance machines are investigated for the first time in this paper. The minimization of the devices offers cost reduction, compact packaging, and enhanced overall reliability. With that in view, a topology with 3N/sub sc/+3 devices is chosen where N/sub sc/ is the number of sectors in the linear machine. The propulsion force with conventional control of single-phase excitation has high-commutation torque pulsation and it is overcome with a multiphase excitation strategy, proposed in this paper. Further, the proposed control strategy reduces the normal force pulsation. A systematic step-by-step design procedure of the switching strategy for the converter known as unipolar switching strategy, proportional plus integral current controller, and gating control strategy of a long linear switched reluctance machine is presented. Experimental correlation of the proposed converter arrangement and control strategy is presented with a 4.8 m-long linear switched reluctance machine in achieving the stated objectives.

108 citations

Journal ArticleDOI
TL;DR: In this paper, a power divider with high selectivity bandpass behavior is presented and analyzed theoretically, based on the coupled-resonator topology, the circuit area of the proposed power dividers can be reduced as the size of the assembled resonators shrinks.
Abstract: Miniaturized power dividers with high-selectivity bandpass behavior are presented and analyzed theoretically in this paper. Based on the coupled-resonator topology, the circuit area of the proposed power divider can be reduced as the size of the assembled resonators shrinks. Therefore, in order to effectively reduce the circuit area and improve the stopband performance, the net-type resonator is selected to design the filtering power dividers. For demonstration, power dividers with Chebyshev- and quasi-elliptic bandpass responses have been designed and fabricated with microstrip in printed circuit boards. The highly symmetric structure of each power divider provides a low in-band magnitude and phase imbalances. Consequently, the proposed filtering power dividers have advantages of small size, sharp skirt selectivity, high isolation, and superior out-of-band performance. All measured results are in good agreement with the full-wave simulation results.

108 citations

Journal ArticleDOI
TL;DR: Experimental tests developed in this paper show the capability of controling the grid currents in the synchronous reference frame in order to provide grid services, which makes this matrix converter ideal for battery charging of electric vehicles and energy storage applications.
Abstract: This paper presents a new modulation and control strategies for the high-frequency link matrix converter (HFLMC). The proposed method aims to achieve controllable power factor in the grid interface as well as voltage and current regulation for a battery energy storage device. The matrix converter (MC) is a key element of the system, since it performs a direct ac to ac conversion between the grid and the power transformer, dispensing the traditional dc-link capacitors. Therefore, the circuit volume and weight are reduced and a longer service life is expected when compared with the existing technical solutions. A prototype was built to validate the mathematical analysis and the simulation results. Experimental tests developed in this paper show the capability of controling the grid currents in the synchronous reference frame in order to provide grid services. Simultaneously, the battery current is well regulated with small ripple, which makes this converter ideal for battery charging of electric vehicles and energy storage applications.

108 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
90% related
Voltage
296.3K papers, 1.7M citations
88% related
CMOS
81.3K papers, 1.1M citations
86% related
Integrated circuit
82.7K papers, 1M citations
85% related
Amplifier
163.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,701
20227,927
20212,733
20202,663
20192,742