scispace - formally typeset
Search or ask a question
Topic

Topology (electrical circuits)

About: Topology (electrical circuits) is a research topic. Over the lifetime, 33316 publications have been published within this topic receiving 397651 citations. The topic is also known as: topology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 75-dB 2.8-/spl mu/W 100-Hz-10-kHz envelope detector was proposed for low-power bionic implants for the deaf, hearing aids, and speech recognition front-ends.
Abstract: We report a 75-dB 2.8-/spl mu/W 100-Hz-10-kHz envelope detector in a 1.5-/spl mu/m 2.8-V CMOS technology. The envelope detector performs input dc insensitive voltage-to-current converting rectification followed by novel nanopower current-mode peak detection. The use of a subthreshold wide linear range transconductor allows greater than 1.7-V/sub pp/ input voltage swings. We show theoretically that the optimal performance of this circuit is technology independent for the given topology and may be improved only by spending more power due to thermal noise rectification limits. A novel circuit topology is used to perform 140-nW peak detection with controllable attack and release time constants. We demonstrate good agreement of experimentally measured results with theory. The envelope detector is useful in low-power bionic implants for the deaf, hearing aids, and speech-recognition front-ends.

85 citations

Journal ArticleDOI
TL;DR: This paper proposes a heuristic yet effective method to determine a feasible attacking region of a single line, which requires less network information, and uses six IEEE standard systems to validate the proposed attacking strategy.
Abstract: It has been shown that an attacker can stealthily launch false data injection attacks against the state estimation without knowing the full topology and parameter information of the entire power network. In this paper, we propose a heuristic yet effective method to determine a feasible attacking region of a single line, which requires less network information. We use six IEEE standard systems to validate the proposed attacking strategy. This paper can reveal the vulnerability of the real-time topology of a power grid and is very helpful to develop effective protection strategies against topology attacks in smart grids.

85 citations

Journal ArticleDOI
TL;DR: The proposed single-stage regulators with power-factor correction (PFC) based on an asymmetrical half-bridge topology can achieve high power factor, high power density, high efficiency, low switching loss, and low component count, which makes its applications at medium-power levels feasible.
Abstract: This work presents single-stage regulators with power-factor correction (PFC) based on an asymmetrical half-bridge topology. The proposed regulator is formed from a boost converter with two coupled inductors and an asymmetrical half-bridge converter with the synchronous switch technique, and it is controlled with pulsewidth modulation to achieve zero-voltage switching (ZVS). The boost converter is operated in discontinues conduction mode to achieve PFC. With the coupled inductors, input current ripple and power factor can be improved significantly. The proposed regulator has the features of constant-frequency operation, ZVS, and low voltage stress imposed on the active switches. Moreover, the regulator can achieve high power factor, high power density, high efficiency, low switching loss, and low component count, which makes its applications at medium-power levels feasible. Experimental results have verified the discussed features of the proposed regulator.

84 citations

Journal ArticleDOI
TL;DR: In this paper, a boost three-level dc-dc converter with a diode rectification quasi-Z source (BTL-DRqZ) is presented to solve the problem of mismatched voltage levels between the dynamic lower voltage of the fuel cell stack and the required constant higher voltage (400 V) of the dc-link bus of the inverter for fuel cell vehicles.
Abstract: To solve the problem of the mismatched voltage levels between the dynamic lower voltage of the fuel cell stack and the required constant higher voltage (400 V) of the dc-link bus of the inverter for fuel cell vehicles, a boost three-level dc–dc converter with a diode rectification quasi-Z source (BTL-DRqZ) is presented in this paper, based on the conventional flying-capacitor boost three-level dc–dc converter. The operating principle of a wide range voltage-gain for this topology is discussed according to the effective switching states of the converter and the multiloop energy communication characteristic of the DRqZ source. The relationship between the quasi-Z source net capacitor voltages, the modulation index, and the output voltage is deduced and then the static and dynamic self-balance principle of the flying-capacitor voltage is presented. Furthermore, a boost three-level dc–dc converter with a synchronous rectification quasi-Z source (BTL-SRqZ) is additionally proposed to improve the conversion efficiency. Finally, a scale-down 1.2 kW BTL-SRqZ prototype has been created, and the maximum efficiency is improved up to 95.66% by using synchronous rectification. The experimental results validate the feasibility of the proposed topology and the correctness of its operating principles. It is suitable for the fuel cell vehicles.

84 citations

Journal ArticleDOI
TL;DR: A new multilevel converter topology which is able to supply bidirectional current loads and has better conditions with respect to the used semiconductor count, switching and conduction losses, and total blocking voltage is introduced.
Abstract: Inverters, as one of the key components of electrical systems, have experienced a great evolution in the last decade, and their performance improvement is a challenge even today, leading to many researches on topologies and control schemes. This study introduces a new multilevel converter topology which is able to supply bidirectional current loads. The proposed structure has fewer power electronic devices such as power switches, driver circuits, power diodes, and DC voltage sources and, can be designed in both symmetric and asymmetric structures. In order to increase the number of output levels and the proposed basic unit development, modular expansion or cascading methods can be used. This study demonstrates that the aforementioned methods have the best results in asymmetric and symmetric structures of the proposed topology, respectively. The comparison between the proposed converter and some previous topologies shows that it has better conditions with respect to the used semiconductor count, switching and conduction losses, and total blocking voltage. The operation and performance of the proposed multi-level converter have been ascertained through simulations and verified experimentally for a single-phase symmetric thirty-one-level inverter which shows the proposed converter's ability in smooth sinusoidal output voltage generation with minimum total harmonic distortion.

84 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
90% related
Voltage
296.3K papers, 1.7M citations
88% related
CMOS
81.3K papers, 1.1M citations
86% related
Integrated circuit
82.7K papers, 1M citations
85% related
Amplifier
163.9K papers, 1.3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20233,701
20227,927
20212,733
20202,663
20192,742