scispace - formally typeset
Search or ask a question

Showing papers on "Toxicity published in 2014"


Journal ArticleDOI
TL;DR: Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface, suggesting at least a factor of five before a level of concern to the general population is reached.

434 citations


Journal ArticleDOI
TL;DR: A general mechanism for the toxicity induced by metal-containing NPs is demonstrated, named “lysosome-enhanced Trojan horse effect”, which provides design rules to engineer safer NPs.
Abstract: The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment – where particles are abundantly internalized – is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a “lysosome-enhanced Trojan horse effect” since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.

390 citations


Journal ArticleDOI
TL;DR: It is hypothesized that at low concentration, Se can decrease As toxicity via excretion of As-Se compound [(GS3)2AsSe](-), but at high concentration, excessive Se can enhance As toxicity by reacting with S-adenosylmethionine and glutathione, and modifying the structure and activity of arsenite methyltransferase.

320 citations


Journal ArticleDOI
TL;DR: Results suggest that ions, per se or released by NPs, are the true inducers of Pd toxicity, and that cells exposed to Pd(IV) ions showed a significant amplification of these cell cycle alterations.
Abstract: There is concern about the possible toxicity of palladium nanoparticles (Pd-NP), as they are released in the environment through many applications. We previously studied the toxicity of Pd-NP at high concentrations; here we address the possible toxicity of Pd-NP at low, subtoxic doses. In particular, we have exposed normal human PBMC entering into the first in vitro mitotic division to Pd-NP and to Pd(IV) ions to evaluate ROS generation and cell cycle progression. We have measured a statistically significant increase of intracellular ROS in Pd(IV) exposed cells, but not in Pd-NP exposed cells. TEM revealed accumulation of lipid droplets and autophagic and mitophagic vacuoles, which appeared more conspicuous in cells exposed to Pd(IV) ions than to Pd-NP. Pd-NP were visible in the cytoplasm of Pd-NP exposed cells. Pd-NP addition was associated with a significant increase of cells within the G0/G1-phase and a significant reduction in GS- and G2/M-phases. Cells exposed to Pd(IV) ions showed a significant amplification of these cell cycle alterations. These results suggest that ions, per se or released by NPs, are the true inducers of Pd toxicity. It will be essential to verify whether the observed disturbance represents a temporary response or might result in permanent alterations.

261 citations


Journal ArticleDOI
TL;DR: In this article, the safety of surfactants in aquatic systems, in terrestrial ecosystems and for humans is reviewed. But the authors focus on the biodegradation of the anionic detergents sodium dodecyl sulfate and linear alkyl benzene sulfonate.
Abstract: Surfactants toxicity has induced a worldwide alert followed by various regulations. There are still concerns about the biodegradability and ecofriendliness of surfactants. Reviews on surfactants are available, but a concise manuscript covering surfactant types, primary and secondary toxicity of surfactants, evaluating the level of surfactant pollution worldwide, is needed. We review here the safety of surfactants in the aquatic system, in terrestrial ecosystems and for humans. We discuss strategies to solve surfactant contamination. Remediation methods include ozonation, UV radiation and catalyst-coupled auto-oxidation. We focus on the biodegradation of the anionic detergents sodium dodecyl sulfate and linear alkyl benzene sulfonate. Finally, the relevance and role of biosurfactants as alternatives to synthetic detergents are also described.

233 citations


Journal ArticleDOI
TL;DR: Interestingly, recent findings suggest that the induction of nuclear factor erythroid like-2 (Nrf2), a major regulator of the antioxidant response, by some of the above-mentioned antioxidants, has been involved in the protective effect against PQ-induced toxicity.
Abstract: Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture, it exerts its toxic effects mainly because of its redox cycle through the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The contribution of mitochondrial dysfunction including increased production of reactive oxygen species besides the reduction in oxygen consumption as well as in the activity of some respiratory complexes has emerged as a key component in the mechanisms through which PQ induces cell death. Although several aspects of PQ-mitochondria interaction remain to be clarified, recent advances have been conducted with reproducible results. Currently, there is no treatment for PQ poisoning; however, several studies taking into account oxidative stress as the main mechanism of PQ-induced toxicity suggest an antioxidant therapy as a viable alternative. In fact, it has been shown that the antioxidants naringin, sylimarin, edaravone, Bathysa cuspidata extracts, alpha-lipoic acid, pirfenidone, lysine acetylsalicylate, selenium, quercetin, C-phycocyanin, bacosides, and vitamin C may be useful in the treatment against PQ toxicity. The main mechanisms involved in the protective effect of these antioxidants include the reduction of oxidative stress and inflammation and the induction of antioxidant defenses. Interestingly, recent findings suggest that the induction of nuclear factor erythroid like-2 (Nrf2), a major regulator of the antioxidant response, by some of the above-mentioned antioxidants, has been involved in the protective effect against PQ-induced toxicity.

200 citations


Journal ArticleDOI
TL;DR: The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories, showing that the ZfET is a robust method with a good intra- and inter-laboratory reproducible for most chemicals and laboratories.

191 citations


Journal ArticleDOI
TL;DR: ZnO NP inhalation studies showed minimal pulmonary inflammation, cytotoxicity or lung histopathologic changes, leading to the conclusion that ZnO NPs have low sub-chronic toxicity by the inhalation route.
Abstract: Background: Although ZnO nanoparticles (NPs) are used in many commercial products and the potential for human exposure is increasing, few in vivo studies have addressed their possible toxic effects after inhalation. We sought to determine whether ZnO NPs induce pulmonary toxicity in mice following sub-acute or sub-chronic inhalation exposure to realistic exposure doses. Methods: Mice (C57Bl/6) were exposed to well-characterized ZnO NPs (3.5 mg/m 3 , 4 hr/day) for 2 (sub-acute) or 13 (sub-chronic) weeks and necropsied immediately (0 wk) or 3 weeks (3 wks) post exposure. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid as well as measurements of pulmonary mechanics. Generation of reactive oxygen species was assessed in the lungs. Lungs were evaluated for histopathologic changes and Zn content. Zn concentration in blood, liver, kidney, spleen, heart, brain and BAL fluid was measured. Results: An elevated concentration of Zn 2+ was detected in BAL fluid immediately after exposures, but returned to baseline levels 3 wks post exposure. Dissolution studies showed that ZnO NPs readily dissolved in artificial lysosomal fluid (pH 4.5), but formed aggregates and precipitates in artificial interstitial fluid (pH 7.4). Sub-acute exposure to ZnO NPs caused an increase of macrophages in BAL fluid and a moderate increase in IL-12(p40) and MIP-1α, but no other inflammatory or toxic responses were observed. Following both sub-acute and sub-chronic exposures, pulmonary mechanics were no different than sham-exposed animals. Conclusions: Our ZnO NP inhalation studies showed minimal pulmonary inflammation, cytotoxicity or lung histopathologic changes. An elevated concentration of Zn in the lung and BAL fluid indicates dissolution of ZnO NPs in the respiratory system after inhalation. Exposure concentration, exposure mode and time post exposure played an important role in the toxicity of ZnO NPs. Exposure for 13 wks with a cumulative dose of 10.9 mg/kg yielded increased lung cellularity, but other markers of toxicity did not differ from sham-exposed animals, leading to the conclusion that ZnO NPs have low sub-chronic toxicity by the inhalation route.

188 citations


Journal ArticleDOI
05 Nov 2014-PLOS ONE
TL;DR: The combined effect of vitamin D supplementation and body weight on serum 25-hydroxyvitamin (25(OH)D) and serum calcium in healthy volunteers and BMI, relative to absolute body weight, was found to be the better determinant of 25( OH)D.
Abstract: Unlike vitamin D recommendations by the Institute of Medicine, the Clinical Practice Guidelines by the Endocrine Society acknowledge body weight differentials and recommend obese subjects be given two to three times more vitamin D to satisfy their body's vitamin D requirement. However, the Endocrine Society also acknowledges that there are no good studies that clearly justify this. In this study we examined the combined effect of vitamin D supplementation and body weight on serum 25-hydroxyvitamin (25(OH)D) and serum calcium in healthy volunteers. We analyzed 22,214 recordings of vitamin D supplement use and serum 25(OH)D from 17,614 healthy adult volunteers participating in a preventive health program. This program encourages the use of vitamin D supplementation and monitors its use and serum 25(OH)D and serum calcium levels. Participants reported vitamin D supplementation ranging from 0 to 55,000 IU per day and had serum 25(OH)D levels ranging from 10.1 to 394 nmol/L. The dose response relationship between vitamin D supplementation and serum 25(OH)D followed an exponential curve. On average, serum 25(OH)D increased by 12.0 nmol/L per 1,000 IU in the supplementation interval of 0 to 1,000 IU per day and by 1.1 nmol/L per 1,000 IU in the supplementation interval of 15,000 to 20,000 IU per day. BMI, relative to absolute body weight, was found to be the better determinant of 25(OH)D. Relative to normal weight subjects, obese and overweight participants had serum 25(OH)D that were on average 19.8 nmol/L and 8.0 nmol/L lower, respectively (P<0.001). We did not observe any increase in the risk for hypercalcemia with increasing vitamin D supplementation. We recommend vitamin D supplementation be 2 to 3 times higher for obese subjects and 1.5 times higher for overweight subjects relative to normal weight subjects. This observational study provides body weight specific recommendations to achieve 25(OH)D targets.

183 citations


Journal ArticleDOI
TL;DR: The effects of commercially available nanoparticles were studied in healthy volunteers, concluding no detectable toxicity with the utilized comprehensive assays and tests.

173 citations


Journal ArticleDOI
TL;DR: The basic mechanisms involved in the promotion of immunogenic cell death and its relevance in the treatment of colorectal cancer are reviewed and the impact of CID on patient outcomes and therapeutic strategies to prevent or minimise the effect of GI toxicity and mucositis are discussed.
Abstract: Chemotherapy-induced diarrhea (CID) is a common and often severe side effect experienced by colorectal cancer (CRC) patients during their treatment. As chemotherapy regimens evolve to include more efficacious agents, CID is increasingly becoming a major cause of dose limiting toxicity and merits further investigation. Inflammation is a key factor behind gastrointestinal (GI) toxicity of chemotherapy. Different chemotherapeutic agents activate a diverse range of pro-inflammatory pathways culminating in distinct histopathological changes in the small intestine and colonic mucosa. Here we review the current understanding of the mechanisms behind GI toxicity and the mucositis associated with systemic treatment of CRC. Insights into the inflammatory response activated during this process gained from various models of GI toxicity are discussed. The inflammatory processes contributing to the GI toxicity of chemotherapeutic agents are increasingly being recognised as having an important role in the development of anti-tumor immunity, thus conferring added benefit against tumor recurrence and improving patient survival. We review the basic mechanisms involved in the promotion of immunogenic cell death and its relevance in the treatment of colorectal cancer. Finally, the impact of CID on patient outcomes and therapeutic strategies to prevent or minimise the effect of GI toxicity and mucositis are discussed.

Journal ArticleDOI
TL;DR: This article will review those drugs that are associated with impaired renal function and provide an overview of nephrotoxic drugs that a treating physician is most likely to encounter by focusing on pharmaceutical agents that are currently in clinical practice.
Abstract: Pharmaceutical agents provide diagnostic and therapeutic utility that are central to patient care. However, all agents also carry adverse drug effect profiles. While most of these are clinically insignificant, some drugs may cause unacceptable toxicity that impacts negatively on patient morbidity and mortality. Recognizing adverse effects is important for administering appropriate drug doses, instituting preventive strategies, and withdrawing the offending agent due to toxicity. In the present article, we will review those drugs that are associated with impaired renal function. By focusing on pharmaceutical agents that are currently in clinical practice, we will provide an overview of nephrotoxic drugs that a treating physician is most likely to encounter. In doing so, we will summarize risk factors for nephrotoxicity, describe clinical manifestations, and address preventive and treatment strategies.

Journal ArticleDOI
TL;DR: The results of the study demonstrate for the first time that quercetin prevents OTA-induced toxicity in HepG2 cells and modulated Ota-induced oxidative stress and redox-signaling in Hepg2 cells.

Journal ArticleDOI
TL;DR: A significant increase in dopamine and norepinephrine levels in brain cerebral cortex and increased brain oxidative stress suggest neurotoxic potential of these nanoparticles.
Abstract: Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. However the information regarding toxicity of these nanoparticles on humans and environment is still deficient. The present study investigated the toxic effects of three metal oxide nanoparticles, TiO2, ZnO and Al2O3 on mouse erythrocytes, brain and liver. Male mice were administered a single oral dose of 500 mg/kg of each nanoparticles for 21 consecutive days. The results suggest that exposure to these nano metallic particles produced a significant oxidative stress in erythrocyte, liver and brain as evident from enhanced levels of Reactive Oxygen Species (ROS) and altered antioxidant enzymes activities. A significant increase in dopamine and norepinephrine levels in brain cerebral cortex and increased brain oxidative stress suggest neurotoxic potential of these nanoparticles. Transmission electron microscopic (TEM) analysis indicated the presence of these nanoparticles inside the cytoplasm and nucleus. These changes were also supported by the inhibition of CuZnSOD and MnSOD, considered as important biomarkers of oxidative stress. The toxic effects produced by these nanoparticles were more pronounced in the case of zinc oxide, followed by aluminum oxide and titanium dioxide, respectively. The present results further suggest the involvement of oxidative stress as one of the main mechanisms involved in nanoparticles induced toxic manifestations.

Journal ArticleDOI
TL;DR: Measurement of total tissue silver content indicated that PLFA reduced total organismal uptake of ionic silver, but not of citrate-coated Ag NPs (CIT-Ag NPs), and co-exposure to PLFA resulted in the formation of NOM-Ag NP composites and rescued AgNO3- and CIT- Ag NP-induced cellular damage.
Abstract: Significant progress has been made in understanding the toxicity of silver nanoparticles (Ag NPs) under carefully controlled laboratory conditions. Natural organic matter (NOM) is omnipresent in complex environmental systems, where it may alter the behavior of nanoparticles in these systems. We exposed the nematode Caenorhabditis elegans to Ag NP suspensions with or without one of two kinds of NOM, Suwannee River and Pony Lake fulvic acids (SRFA and PLFA, respectively). PLFA rescued toxicity more effectively than SRFA. Measurement of total tissue silver content indicated that PLFA reduced total organismal (including digestive tract) uptake of ionic silver, but not of citrate-coated Ag NPs (CIT-Ag NPs). The majority of the CIT-Ag NP uptake was in the digestive tract. Limited tissue uptake was detected by hyperspectral microscopy but not by transmission electron microscopy. Co-exposure to PLFA resulted in the formation of NOM–Ag NP composites (both in medium and in nematodes) and rescued AgNO3- and CIT-Ag N...

01 Jan 2014
TL;DR: In this article, the core domain of the human molecular chaperone αB-crystallin can function effectively in preventing protein aggregation and amyloid toxicity, and the structures of these domains that are presented should represent useful scaffolds for the design of novel AMyloid inhibitors.
Abstract: Significance We find that the core domain of the human molecular chaperone αB-crystallin can function effectively in preventing protein aggregation and amyloid toxicity. The core domain represents only half the total sequence of the protein, but it is one of the most potent known inhibitors of the aggregation of amyloid-β, a process implicated in Alzheimer’s disease. We have determined high-resolution structures of this core domain and investigated its biophysical properties in solution. We find that the excised domain efficiently prevents amyloid aggregation and thereby reduces the toxicity of the resulting aggregates to cells. The structures of these domains that we present should represent useful scaffolds for the design of novel amyloid inhibitors. Mammalian small heat-shock proteins (sHSPs) are molecular chaperones that form polydisperse and dynamic complexes with target proteins, serving as a first line of defense in preventing their aggregation into either amorphous deposits or amyloid fibrils. Their apparently broad target specificity makes sHSPs attractive for investigating ways to tackle disorders of protein aggregation. The two most abundant sHSPs in human tissue are αB-crystallin (ABC) and HSP27; here we present high-resolution structures of their core domains (cABC, cHSP27), each in complex with a segment of their respective C-terminal regions. We find that both truncated proteins dimerize, and although this interface is labile in the case of cABC, in cHSP27 the dimer can be cross-linked by an intermonomer disulfide linkage. Using cHSP27 as a template, we have designed an equivalently locked cABC to enable us to investigate the functional role played by oligomerization, disordered N and C termini, subunit exchange, and variable dimer interfaces in ABC. We have assayed the ability of the different forms of ABC to prevent protein aggregation in vitro. Remarkably, we find that cABC has chaperone activity comparable to that of the full-length protein, even when monomer dissociation is restricted through disulfide linkage. Furthermore, cABC is a potent inhibitor of amyloid fibril formation and, by slowing the rate of its aggregation, effectively reduces the toxicity of amyloid-β peptide to cells. Overall we present a small chaperone unit together with its atomic coordinates that potentially enables the rational design of more effective chaperones and amyloid inhibitors.

Journal ArticleDOI
TL;DR: Surface chemistry plays a pivotal role in NP toxicity and that surface chemistry has the potential to affect the sustainability of these materials, as research demonstrates.
Abstract: Nanoparticles (NPs) are the basis of a range of emerging technologies used for a variety of industrial, biomedical, and environmental applications. As manufactured NP production increases, so too does the concern about their release into the environment and potentially harmful effects. Creating nanomaterials that have minimal negative environmental impact will heavily influence the sustainability of nanomaterials as a technology. In order to create such NPs, the mechanisms that govern NP toxicity need to be better elucidated. One aspect of NP structure that may influence toxicity is the identity and charge of ligand molecules used to functionalize the NP surface. These surface chemistries have the potential to increase or decrease negative biological impacts, yet their impacts are poorly understood. In this study, the toxicity of three types of functionalized ~4–5 nm gold NPs (AuNPs), polyallylamine hydrochloride (PAH–AuNPs), citrate (Cit–AuNPs) and mercaptopropionic acid (MPA–AuNPs) as well as cetyltrimethylammonium bromide-functionalized gold nanorods (CTAB–AuNRs) were evaluated in the toxicological model species, Daphnia magna. In order to get the most detailed information on NP toxicity in D. magna, both acute and chronic toxicity assays were performed. Acute exposure toxicity assays show that overall the negatively-charged AuNPs tested are orders of magnitude less toxic than the positively-charged AuNPs. However, chronic exposure assays show that both positively and negatively-charged particles impact reproduction but potentially through different mechanisms and dependent upon functional group. In addition, while select ligands used in NP functionalization (such as CTAB) that are toxic on their own can contribute to observed NP toxicity, our acute toxicity assays indicate that minimally toxic ligands (such as PAH) can also cause significant toxicity when conjugated to NPs. This research demonstrates that surface chemistry plays a pivotal role in NP toxicity and that surface chemistry has the potential to affect the sustainability of these materials.

Journal ArticleDOI
TL;DR: Observations suggest that Pb and Cd are practically additive-toxic for the SD rats in oral acute toxicity studies, and the lowest observed adverse-effect level in rats may be lower than a dose of 29.96mg/(kgbwday) when administered orally for 90 consecutive days.

Journal ArticleDOI
TL;DR: The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic.
Abstract: The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic.

Journal ArticleDOI
TL;DR: The findings contribute to elucidation of the factors involved in the toxicity of these nanoparticles, as well as to the establishment of protocols for risk assessments of nanotechnology.

Journal ArticleDOI
TL;DR: Ketamine is a dissociative anesthetic and substance of abuse that can alter numerous functions in the brain including color perception, memory, attention, cognition, reaction time, and sense of time and can produce psychological addiction.
Abstract: Ketamine is a dissociative anesthetic and substance of abuse. Numerous effects can result from the abuse of ketamine. Death from acute direct toxicity is rare. Ketamine can alter numerous functions in the brain including color perception, memory, attention, cognition, reaction time, and sense of time and can produce psychological addiction. Chronic ketamine abuse can produce toxicity to the gastrointestinal and urinary tract. Gastrointestinal changes include epigastric pain, hepatic dysfunction, and impaired gallbladder activity. The most common urological condition from ketamine is cystitis but renal failure has been reported.

Journal ArticleDOI
TL;DR: Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species.
Abstract: Vascular inflammation, infusion reactions, glomerulopathies, and other potentially adverse effects may be observed in laboratory animals, including monkeys, on toxicity studies of therapeutic monoclonal antibodies and recombinant human protein drugs. Histopathologic and immunohistochemical (IHC) evaluation suggests these effects may be mediated by deposition of immune complexes (ICs) containing the drug, endogenous immunoglobulin, and/or complement components in the affected tissues. ICs may be observed in glomerulus, blood vessels, synovium, lung, liver, skin, eye, choroid plexus, or other tissues or bound to neutrophils, monocytes/macrophages, or platelets. IC deposition may activate complement, kinin, and/or coagulation/fibrinolytic pathways and result in a systemic proinflammatory response. IC clearance is biphasic in humans and monkeys (first from plasma to liver and/or spleen, second from liver or spleen). IC deposition/clearance is affected by IC composition, immunomodulation, and/or complement activation. Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species. The IHC-staining patterns are consistent with findings associated with generalized and localized IC-associated pathology in humans. However, manifestations of immunogenicity in preclinical species are generally not considered predictive to humans.

Journal ArticleDOI
03 Feb 2014-PLOS ONE
TL;DR: It is demonstrated that Cd accumulated in some tissues of mice after Cd administration and the gut barrier was impaired, and the levels of short-chain fatty acids in colonic decreased significantly, providing valuable insight into the effects of Cd intake on mice gut microbiota.
Abstract: Cadmium (Cd), one of the heavy metals, is an important environmental pollutant and a potent toxicant to organism. It poses a severe threat to the growth of the organism, and also has been recognized as a human carcinogen. However, the toxicity of cadmium and its influences on microbiota in mammal's intestine are still unclear. In our experiment, the changes of intestinal microbiota in two groups of mice were investigated, which were supplied with 20 and 100 mg kg−1 cadmium chloride respectively for 3 weeks. The control group was treated with water free from cadmium chloride only. This study demonstrated that Cd accumulated in some tissues of mice after Cd administration and the gut barrier was impaired. Cd exposure also significantly elevated the colonic level of TNF-α. On the other hand, Cd-treatment could slow down the growth of gut microbiota and reduced the abundance of total intestinal bacteria of the mice. Among them, the growth of Bacteroidetes was significantly suppressed while Firmicutes growth was not. The probiotics including Lactobacillus and Bifidobacterium were notably inhibited. We also observed that the copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids (SCFAs) were lower in Cd-treated groups than control. As a result, the levels of short-chain fatty acids in colonic decreased significantly. In summary, this study provides valuable insight into the effects of Cd intake on mice gut microbiota.

Journal ArticleDOI
TL;DR: It is demonstrated that mice treated with DMOG are protected from gastrointestinal damage and survive otherwise lethal amounts of irradiation to the abdomen and the authors demonstrate that prolyl hydroxylase inhibition represents a treatment strategy to protect against and mitigate GI toxicity from both therapeutic radiation and potentially lethal radiation exposures.
Abstract: Radiation-induced gastrointestinal (GI) toxicity can be a major source of morbidity and mortality after radiation exposure. There is an unmet need for effective preventative or mitigative treatments against the potentially fatal diarrhea and water loss induced by radiation damage to the GI tract. We report that prolyl hydroxylase inhibition by genetic knockout or pharmacologic inhibition of all PHD (prolyl hydroxylase domain) isoforms by the small-molecule dimethyloxallyl glycine (DMOG) increases hypoxia-inducible factor (HIF) expression, improves epithelial integrity, reduces apoptosis, and increases intestinal angiogenesis, all of which are essential for radioprotection. HIF2, but not HIF1, is both necessary and sufficient to prevent radiation-induced GI toxicity and death. Increased vascular endothelial growth factor (VEGF) expression contributes to the protective effects of HIF2, because inhibition of VEGF function reversed the radioprotection and radiomitigation afforded by DMOG. Additionally, mortality from abdominal or total body irradiation was reduced even when DMOG was given 24 hours after exposure. Thus, prolyl hydroxylase inhibition represents a treatment strategy to protect against and mitigate GI toxicity from both therapeutic radiation and potentially lethal radiation exposures.

Journal ArticleDOI
TL;DR: The authors concluded that the toxicity was related to the capping proteins as opposed to the biodistribution of the particles, providing important suggestion for future design of gold nanoparticles.

Journal ArticleDOI
TL;DR: The number of pesticides and degradates included in previous editions of the PTI is expanded from 124 to 492, and the Sensitive-PTI is included, which is a more sensitive screening-level indicator of potential toxicity.

Journal ArticleDOI
TL;DR: Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response, which will be helpful for the understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.
Abstract: Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.

Journal ArticleDOI
Akira Murakami1
TL;DR: Dose-dependent functionality and toxicity of GTPs are in accordance with the concept of hormesis, in which mild, but not severe, stress activates defense systems for adaptation and survival, and unwanted side-effects occasionally emerge with high doses.

Journal ArticleDOI
TL;DR: It is concluded that high-content automated screening assays using iPSC-derived hepatocytes are feasible, provide information about mechanisms of toxicity, and can facilitate the safety assessment of drugs and chemicals.
Abstract: Development of predictive in vitro assays for early toxicity evaluation is extremely important for improving the drug development process and reducing drug attrition rates during clinical development. High-content imaging-based in vitro toxicity assays are emerging as efficient tools for safety and efficacy testing to improve drug development efficiency. In this report we have used an induced pluripotent stem cell (iPSC)–derived hepatocyte cell model having a primary tissue-like phenotype, unlimited availability, and the potential to compare cells from different individuals. We examined a number of assays and phenotypic markers and developed automated screening methods for assessing multiparameter readouts of general and mechanism-specific hepatotoxicity. Endpoints assessed were cell viability, nuclear shape, average and integrated cell area, mitochondrial membrane potential, phospholipid accumulation, cytoskeleton integrity, and apoptosis. We assayed compounds with known mechanisms of toxicity and also evaluated a diverse hepatotoxicity library of 240 compounds. We conclude that high-content automated screening assays using iPSC-derived hepatocytes are feasible, provide information about mechanisms of toxicity, and can facilitate the safety assessment of drugs and chemicals.

Journal ArticleDOI
TL;DR: Results show that coatings on theAgNPs surface and the particle size make a clear contribution to the toxicity of the AgNPs, and oxidative stress-related mitochondrial and DNA damage appear to be potential mechanisms of toxicity.