scispace - formally typeset
Search or ask a question
Topic

Toxicity

About: Toxicity is a research topic. Over the lifetime, 24530 publications have been published within this topic receiving 631315 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that estrogens, progesterone, and corticosterone can directly affect neuronal vulnerability to excitotoxic, metabolic, and oxidative insults, suggesting roles for these steroids in several different neurodegenerative disorders.
Abstract: Steroid hormones, particularly estrogens and glucocorticoids, may play roles in the pathogenesis of neurodegenerative disorders, but their mechanisms of action are not known. We report that estrogens protect cultured hippocampal neurons against glutamate toxicity, glucose deprivation, FeSO4 toxicity, and amyloid beta-peptide (A beta) toxicity. The toxicity of each insult was significantly attenuated in cultures pretreated for 2 h with 100 nM-10 microM 17 beta-estradiol, estriol, or progesterone. In contrast, corticosterone exacerbated neuronal injury induced by glutamate, FeSO4, and A beta. Several other steroids, including testosterone, aldosterone, and vitamin D, had no effect on neuronal vulnerability to the different insults. The protective actions of estrogens and progesterone were not blocked by actinomycin D or cycloheximide. Lipid peroxidation induced by FeSO4 and A beta was significantly attenuated in neurons and isolated membranes pretreated with estrogens and progesterone, suggesting that these steroids possess antioxidant activities. Estrogens and progesterone also attenuated A beta- and glutamate-induced elevation of intracellular free Ca2+ concentrations. We conclude that estrogens, progesterone, and corticosterone can directly affect neuronal vulnerability to excitotoxic, metabolic, and oxidative insults, suggesting roles for these steroids in several different neurodegenerative disorders.

852 citations

Journal ArticleDOI
TL;DR: The results indicate that nanosilver and nanocopper causeoxicity in all organisms tested, with 48-h median lethal concentrations as low as 40 and 60 microg/L, respectively, in Daphnia pulex adults, whereas titanium dioxide did not cause toxicity in any of the tests.
Abstract: Metallic nanoparticles are among the most widely used types of engineered nanomaterials; however, little is known about their environmental fate and effects. To assess potential environmental effects of engineered nanometals, it is important to determine which species are sensitive to adverse effects of various nanomaterials. In the present study, zebrafish, daphnids, and an algal species were used as models of various trophic levels and feeding strategies. To understand whether observed effects are caused by dissolution, particles were characterized before testing, and particle concentration and dissolution were determined during exposures. Organisms were exposed to silver, copper, aluminum, nickel, and cobalt as both nanoparticles and soluble salts as well as to titanium dioxide nanoparticles. Our results indicate that nanosilver and nanocopper cause toxicity in all organisms tested, with 48-h median lethal concentrations as low as 40 and 60 μg/L, respectively, in Daphnia pulex adults, whereas titanium dioxide did not cause toxicity in any of the tests. Susceptibility to nanometal toxicity differed among species, with filter-feeding invertebrates being markedly more susceptible to nanometal exposure compared with larger organisms (i.e., zebrafish). The role of dissolution in observed toxicity also varied, being minor for silver and copper but, apparently, accounting for most of the toxicity with nickel. Nanoparticulate forms of metals were less toxic than soluble forms based on mass added, but other dose metrics should be developed to accurately assess concentration–response relationships for nanoparticle exposures.

851 citations

Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: Evidence is reviewed that patients with type 2 diabetes continually undergo oxidative stress, that elevated glucose concentrations increase levels of reactive oxygen species inβ-cells, that islets have intrinsically low antioxidant enzyme defenses, and that antioxidant drugs and overexpression of antioxidant enzymes protect β-cells from glucose toxicity.
Abstract: The relentless decline in β-cell function frequently observed in type 2 diabetic patients, despite optimal drug management, has variously been attributed to glucose toxicity and lipotoxicity. The former theory posits hyperglycemia, an outcome of the disease, as a secondary force that further damages β-cells. The latter theory suggests that the often-associated defect of hyperlipidemia is a primary cause of β-cell dysfunction. We review evidence that patients with type 2 diabetes continually undergo oxidative stress, that elevated glucose concentrations increase levels of reactive oxygen species in β-cells, that islets have intrinsically low antioxidant enzyme defenses, that antioxidant drugs and overexpression of antioxidant enzymes protect β-cells from glucose toxicity, and that lipotoxicity, to the extent it can be attributable to hyperlipidemia, occurs only in the context of preexisting hyperglycemia, whereas glucose toxicity can occur in the absence of hyperlipidemia.

817 citations

Journal ArticleDOI
TL;DR: Results suggest that the pathological changes induced by TCDD in the liver and thymus are mediated entirely by the AHR, however, it is important to note that at high doses of T CDD, AHR-deficient mice displayed limited vasculitis and scattered single cell necrosis in their lungs and livers, respectively.

809 citations

Journal Article
TL;DR: It is suggested that determination of the UGT1A1 genotypes might be clinically useful for predicting severe toxicity by irinotecan in cancer patients and warrants a prospective trial to corroborate the usefulness of gene diagnosis of UGT2A1 polymorphisms prior tb irinOTecan chemotherapy.
Abstract: Irinotecan unexpectedly causes severe toxicity of leukopenia or diarrhea. Irinotecan is metabolized to form active SN-38, which is further conjugated and detoxified by UDP-glucuronosyltransferase (UGT) 1A1 enzyme. Genetic polymorphisms of the UGT1A1 would affect an interindividual variation of the toxicity by irinotecan via the alternation of bioavailability of SN-38. In this case-control study, retrospective review of clinical records and determination of UGT1A1 polymorphisms were performed to investigate whether a patient with the variant UGT1A1 genotypes would be at higher risk for severe toxicity by irinotecan. All patients previously received irinotecan against cancer in university hospitals, cancer centers, or large urban hospitals in Japan. We identified 26 patients who experienced severe toxicity and 92 patients who did not. The relationship was studied between the multiple variant genotypes (UGT1A1*28 in the promoter and UGT1A1*6, UGT1A1*27, UGT1A1*29, and UGT1A1*7 in the coding region) and the severe toxicity of grade 4 leukopenia (< or =0.9 x 10(9)/liter) and/or grade 3 (watery for 5 days or more) or grade 4 (hemorrhagic or dehydration) diarrhea. Of the 26 patients with the severe toxicity, the genotypes of UGT1A1*28 were homozygous in 4 (15%) and heterozygous in 8 (31%), whereas 3 (3%) homozygous and 10 (11%) heterozygous were found among the 92 patients without the severe toxicity. Multivariate analysis suggested that the genotype either heterozygous or homozygous for UGT1A1*28 would be a significant risk factor for severe toxicity by irinotecan (P < 0.001; odds ratio, 7.23; 95% confidence interval, 2.52-22.3). All 3 patients heterozygous for UGT1A1*27 encountered severe toxicity. No statistical association of UGT1A1*6 with the occurrence of severe toxicity was observed. None had UGT1A1*29 or UGT1A1*7. We suggest that determination of the UGT1A1 genotypes might be clinically useful for predicting severe toxicity by irinotecan in cancer patients. This research warrants a prospective trial to corroborate the usefulness of gene diagnosis of UGT1A1 polymorphisms prior tb irinotecan chemotherapy.

804 citations


Network Information
Related Topics (5)
Oxidative stress
86.5K papers, 3.8M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
83% related
Cell culture
133.3K papers, 5.3M citations
83% related
Programmed cell death
60.5K papers, 3.8M citations
82% related
Cell growth
104.2K papers, 3.7M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20233,860
20226,839
20211,108
2020971
2019910