scispace - formally typeset
Search or ask a question
Topic

Trace metal

About: Trace metal is a research topic. Over the lifetime, 5125 publications have been published within this topic receiving 181046 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examine the effects of short-term natural heating of water in thermokarst ponds and lakes in discontinuous permafrost zones and compare these observations to previous field results obtained when the temperature was normal during the summer of 2010 in the same region.
Abstract: During the anomalously hot summer in 2012, surface air temperatures in Western Siberia were 5 to 15 °C higher than those observed during the previous period of > 30 yr. This unusual climate phenomenon provided an opportunity to examine the effects of short-term natural heating of water in thermokarst ponds and lakes in discontinuous permafrost zones and compare these observations to previous field results obtained when the temperature was normal during the summer of 2010 in the same region. In 2012, thermokarst bodies of water shrank significantly, water levels dropped approximately 50 cm in large lakes and small ( 2 ) ponds, and shallow soil depressions disappeared. Based on samples from ~ 40 bodies of water collected previously and in 2012, first-order features of changes in chemical composition in response to increased water temperatures (from 14.1 ± 2.2 to 23.8 ± 2.3 °C in 2010 and 2012, respectively) were established. In these thermokarst bodies of water that covered a full range of surface areas, the average conductivity and pH were almost unchanged, whereas dissolved organic carbon (DOC), Cl - and SO 4 2- concentrations were higher by a factor of ~ 2 during summer 2012 compared to periods with normal temperatures. Similarly, most divalent metals and insoluble trivalent and tetravalent elements were more concentrated by a factor of 1.7–2.4 in the summer of 2012 than normal periods. The average concentrations of dissolved CO 2 and CH 4 during the hot summer of 2012 increased by factors of 1.4 and 4.9, respectively. For most of the trace elements bound to colloids, the degree of colloidal binding decreased by a factor of 1.44 ± 0.33 (for an average of 40 elements) during the hot summer of 2012 compared to normal periods. Increases in CO 2 and CH 4 concentrations with the decreasing size of the body of water were well-pronounced during the hot summer of 2012. The concentrations of CO 2 and CH 4 rose by factors of 5 and 150, respectively, in small (≤ 10 2 m 2 ) compared to large (≥ 10 4 m 2 ) thermokarst (thaw) lakes. Taken together, these trends suggest that, for a conservative scenario of lake size distribution, lake water warming at high latitudes will produce (1) a significant increase in methane emission capacity from thaw lake surfaces; (2) decreased molecular sizes of trace element complexes and potential bioavailability of metal micronutrients in water columns; and (3) relatively conservative responses by CO 2 , DOC and trace element concentrations.

57 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated temporal changes in sediment and macroinvertebrate Cu, Pb and Zn over an eleven-year period with specific attention to land use in stormwater management ponds.
Abstract: Stormwater ponds are an increasingly common feature in urban landscapes. Because these ponds retain runoff and particulate-bound contaminants from impervious surfaces, organisms inhabiting stormwater ponds may be exposed to elevated metal levels in sediments. This study evaluated temporal changes in sediment and macroinvertebrate Cu, Pb and Zn over an eleven-year period with specific attention to land use in pond watersheds. Sediment and invertebrate metal levels were quantified using atomic absorption spectrophotometry (1993 samples) or inductively coupled plasma mass spectrometry (2003–2004 samples). Sediment trace element levels did not significantly change from 1993 to 2003-2004 with the exception of Zn in ponds receiving runoff from highways, which increased from a mean of 32 mg kg−1 in 1993 to 344 mg kg−1 in 2003–2004. Sediment Pb and Cu generally remained below published threshold effects concentrations (TEC) except for two instances of elevated Cu in 2003–2004. Zn remained below the TEC in 1993 but exceeded the TEC in six ponds in 2003–2004. Trace metal body burdens varied among invertebrate groups, and to a lesser extent among land uses, but in both cases this variation was a function of year. In general, trace element body burdens were more similar among invertebrate groups or land use or both during 2003–2004 when compared to levels in 1993. Our results suggest sediment and invertebrate trace metal levels are at steady state in these stormwater management ponds and that risk to organisms inhabiting these ponds does not vary as a function of pond age.

57 citations

Journal ArticleDOI
TL;DR: It is found that the migration of anthropogenic trace metals was mainly controlled by the tide in the Laizhou Bay, and an effective strategies and remedial measures should be designed and undertaken to prevent further anthropogenic Cd and As pollutions in this area in the future.
Abstract: Spatial distribution, ecological risk, pollutant source, and transportation of trace metals in surface sediments, as well as the sediment properties, were analyzed in this study to assess the pollution status of trace metal in the Laizhou Bay, China. Results of provenance analyses indicate that surface sediments were primarily from weathering products carried by the surrounding short rivers and partially from loess matters carried by the Yellow River. Variations of trace metal concentrations were mostly controlled by the accumulation of weathering products, organic matters, and the hydrodynamics. Geoaccumulation index suggests that no Cr pollution occurred in the study area, and Cu, Pb, and Zn pollutions appeared only at a few stations. Comparatively, Cd and As pollutions were at noticeably weak to moderate level at many stations. The combination of six trace metals in this study had a 21 % probability of being toxic in our study area based on sediment quality guidelines. Enrichment factors (EFs) and statistical analyses indicate that Cu, Pb, and Zn were primarily derived from the natural process of weathering. By contrast, Cd, As, and Cr (especially Cd and As) were provided by the anthropogenic activities to a large extent. Due to the dilution of coarse-grained sediments, there was even no contamination at some of stations that were obviously influenced by humans. Based on the current study of transportation process of fine-grained sediments in combination with the spatial distribution of EFs, it is found that the migration of anthropogenic trace metals was mainly controlled by the tide in the Laizhou Bay. The study suggests that an effective strategies and remedial measures should be designed and undertaken to prevent further anthropogenic Cd and As pollutions in this area in the future.

57 citations

Journal ArticleDOI
03 Jun 2016-PLOS ONE
TL;DR: The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.
Abstract: Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

57 citations

Journal ArticleDOI
TL;DR: It is concluded that trends in coastal seawater concentrations will only become apparent after river inputs have dramatically increased, and monitoring coastal water concentrations of dissolved and particulate phase trace metals is not likely to be a sufficiently sensitive technique to detect trends.

57 citations


Network Information
Related Topics (5)
Organic matter
45.5K papers, 1.6M citations
88% related
Sediment
48.7K papers, 1.2M citations
85% related
Water quality
67.1K papers, 945.1K citations
83% related
Sorption
45.8K papers, 1.3M citations
81% related
Groundwater
59.3K papers, 1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202394
2022225
2021197
2020220
2019193
2018186