scispace - formally typeset
Search or ask a question
Topic

Tracheary element differentiation

About: Tracheary element differentiation is a research topic. Over the lifetime, 211 publications have been published within this topic receiving 13617 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings suggest that VND6 and VND7 genes are transcription switches for plant metaxylem and protoxylem vessel formation.
Abstract: Land plants evolved xylem vessels to conduct water and nutrients, and to support the plant. Microarray analysis with a newly established Arabidopsis in vitro xylem vessel element formation system and promoter analysis revealed the possible involvement of some plant-specific NAC-domain transcription factors in xylem formation. VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 can induce transdifferentiation of various cells into metaxylem- and protoxylem-like vessel elements, respectively, in Arabidopsis and poplar. A dominant repression of VND6 and VND7 specifically inhibits metaxylem and protoxylem vessel formation in roots, respectively. These findings suggest that these genes are transcription switches for plant metaxylem and protoxylem vessel formation.

1,016 citations

Journal ArticleDOI
11 Aug 2006-Science
TL;DR: An application, corresponding to all 26 Arabidopsis CLE protein family members, of synthetic dodecapeptides reveals two counteracting signaling pathways involved in stem cell fate.
Abstract: In plants and animals, small peptide ligands that signal in cell-cell communication have been suggested to be a crucial component of development. A bioassay of single-cell transdifferentation demonstrates that a dodecapeptide with two hydroxyproline residues is the functional product of genes from the CLE family, which includes CLAVATA3 in Arabidopsis. The dodecapeptide suppresses xylem cell development at a concentration of 10–11 M and promotes cell division. An application, corresponding to all 26 Arabidopsis CLE protein family members, of synthetic dodecapeptides reveals two counteracting signaling pathways involved in stem cell fate.

575 citations

Journal ArticleDOI
TL;DR: This work shows that a dodecapeptide, TDIF (tracheary element differentiation inhibitory factor), is secreted from the phloem and suppresses the differentiation of vascular stem cells into xylem cells through a leucine-rich repeat receptor-like kinase (LRR-RLK).
Abstract: Land plants evolved a long-distance transport system of water and nutrients composed of the xylem and phloem, both of which are generated from the procambium- and cambium-comprising vascular stem cells. However, little is known about the molecular mechanism of cell communication governing xylem–phloem patterning. Here, we show that a dodecapeptide (HEVHypSGHypNPISN; Hyp, 4-hydroxyproline), TDIF (tracheary element differentiation inhibitory factor), is secreted from the phloem and suppresses the differentiation of vascular stem cells into xylem cells through a leucine-rich repeat receptor-like kinase (LRR-RLK). TDIF binds in vitro specifically to the LRR-RLK, designated TDR (putative TDIF receptor), whose expression is restricted to procambial cells. However, the combined analysis of TDIF with a specific antibody and the expression profiles of the promoters of two genes encoding TDIF revealed that TDIF is synthesized mainly in, and secreted from, the phloem and its neighboring cells. The observation that TDIF is capable of promoting proliferation of procambial cells while suppressing xylem differentiation suggests that this small peptide functions as a phloem-derived, non-cell-autonomous signal that controls stem cell fate in the procambium. Our results indicate that we have discovered a cell communication system governing phloem–xylem cross-talk.

474 citations

Journal ArticleDOI
TL;DR: Populus is presented as a model system for the study of wood formation and high-resolution analysis of auxin distribution across cambial region tissues suggests that auxin provides positional information for the exit of cells from the meristem and probably also for the duration of cell expansion.
Abstract: Populus is presented as a model system for the study of wood formation (xylogenesis). The formation of wood (secondary xylem) is an ordered developmental process involving cell division, cell expansion, secondary wall deposition, lignification and programmed cell death. Because wood is formed in a variable environment and subject to developmental control, xylem cells are produced that differ in size, shape, cell wall structure, texture and composition. Hormones mediate some of the variability observed and control the process of xylogenesis. High-resolution analysis of auxin distribution across cambial region tissues, combined with the analysis of transgenic plants with modified auxin distribution, suggests that auxin provides positional information for the exit of cells from the meristem and probably also for the duration of cell expansion. Poplar sequencing projects have provided access to genes involved in cell wall formation. Genes involved in the biosynthesis of the carbohydrate skeleton of the cell wall are briefly reviewed. Most progress has been made in characterizing pectin methyl esterases that modify pectins in the cambial region. Specific expression patterns have also been found for expansins, xyloglucan endotransglycosylases and cellulose synthases, pointing to their role in wood cell wall formation and modification. Finally, by studying transgenic plants modified in various steps of the monolignol biosynthetic pathway and by localizing the expression of various enzymes, new insight into the lignin biosynthesis in planta has been gained.

466 citations

Journal ArticleDOI
TL;DR: Genetic analyses showed that WOX4 is required for promoting the proliferation of procambial/cambial stem cells but not for repressing their commitment to xylem differentiation in response to the TDIF signal, suggesting at least two intracellular signaling pathways that diverge after TDIF recognition by TDR might regulate independently the behavior of vascular stem cells.
Abstract: The indeterminate nature of plant growth and development depends on the stem cell system found in meristems. The Arabidopsis thaliana vascular meristem includes procambium and cambium. In these tissues, cell-cell signaling, mediated by a ligand-receptor pair made of the TDIF (for tracheary element differentiation inhibitory factor) peptide and the TDR/PXY (for TDIF RECEPTOR/ PHLOEM INTERCALATED WITH XYLEM) membrane protein kinase, promotes proliferation of procambial cells and suppresses their xylem differentiation. Here, we report that a WUSCHEL-related HOMEOBOX gene, WOX4, is a key target of the TDIF signaling pathway. WOX4 is expressed preferentially in the procambium and cambium, and its expression level was upregulated upon application of TDIF in a TDR-dependent manner. Genetic analyses showed that WOX4 is required for promoting the proliferation of procambial/cambial stem cells but not for repressing their commitment to xylem differentiation in response to the TDIF signal. Thus, at least two intracellular signaling pathways that diverge after TDIF recognition by TDR might regulate independently the behavior of vascular stem cells. Detailed observations in loss-of-function mutants revealed that TDIF-TDR-WOX4 signaling plays a crucial role in the maintenance of the vascular meristem organization during secondary growth.

433 citations


Network Information
Related Topics (5)
Abscisic acid
12.8K papers, 587K citations
85% related
Arabidopsis thaliana
19.1K papers, 1M citations
84% related
Auxin
10.7K papers, 502.6K citations
84% related
Arabidopsis
30.9K papers, 2.1M citations
83% related
Chloroplast
11K papers, 496.4K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
20214
20209
20193
20187
20173