scispace - formally typeset
Search or ask a question
Topic

Traction control system

About: Traction control system is a research topic. Over the lifetime, 2580 publications have been published within this topic receiving 27390 citations. The topic is also known as: TCS & Traction Control System, TCS.


Papers
More filters
Journal ArticleDOI
Yoichi Hori1
TL;DR: The UOT Electric March II as discussed by the authors is an experimental electric vehicle with four in-wheel motors, which is made for intensive study of advanced motion control of an electric vehicle (EV).
Abstract: The electric vehicle (EV) is the most exciting object to apply "advanced motion control" technique. As an EV is driven by electric motors, it has the following three remarkable advantages: 1) motor torque generation is fast and accurate; 2) motors can be installed in two or four wheels; and 3) motor torque can be known precisely. These advantages enable us to easily realize: 1) high performance antilock braking system and traction control system with minor feedback control at each wheel; 2) chassis motion control like direct yaw control; and 3) estimation of road surface condition. "UOT Electric March II" is our novel experimental EV with four in-wheel motors. This EV is made for intensive study of advanced motion control of an EV.

682 citations

Journal ArticleDOI
Oldrich Polach1
01 Mar 2005-Wear
TL;DR: In this article, the authors present a method to simulate various real wheel-rail contact conditions using one parameter set, which can be identified from measurements or the recommended parameters for modelling of typical wheel rail contact conditions in engineering applications.

425 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electronic driver assisting systems such as ABS, traction control, electronic stability control, and brake assistant is presented, along with fault-detection methods for use in low-cost components.
Abstract: The article begins with a review of electronic driver assisting systems such as ABS, traction control, electronic stability control, and brake assistant. We then review drive-by-wire systems with and without mechanical backup. Drive-by-wire systems consist of an operating unit with an electrical output, haptic feedback to the driver, bus systems, microcomputers, power electronics, and electrical actuators. For their design safety, integrity methods such as reliability, fault tree and hazard analysis, and risk classification are required. Different fault-tolerance principles with various forms of redundancy are considered, resulting in fail-operational, fail-silent, and fail-safe systems. Fault-detection methods are discussed for use in low-cost components, followed by a review of principles for fault-tolerant design of sensors, actuators, and communication. We evaluate these methods and principles and show how they can be applied to low-cost automotive components and drive-by-wire systems. A brake-by-wire system with electronic pedal and electric brakes is then considered in more detail, showing the design of the components and the overall architecture. Finally, we present conclusions and an outlook for further development of drive-by-wire systems.

390 citations

Journal ArticleDOI
01 Mar 1999
TL;DR: In this paper, a robust dynamic yaw-moment control (DYC) is proposed for an electric vehicle with four independently driven in-wheel motors, which generates yaw from torque differences between the right and left wheels.
Abstract: We study methods of motion control for an electric vehicle (EV) with four independently driven in-wheel motors. First, we propose and simulate a novel robust dynamic yaw-moment control (DYC). DYC is a vehicle attitude control method that generates yaw from torque differences between the right and left wheels. The results of simulations, however, identify a problem with instability on slippery, low /spl mu/ roads. To solve this problem, a new skid detection method is proposed that will be a part of traction control system (TCS) for each drive wheel. The experimental results show that this method can detect a skidding wheel, without any information on chassis velocity. Therefore, this method will be of great help during cornering or braking in a TCS. These methods will be integrated and tested in our new experimental EV.

319 citations

Journal ArticleDOI
TL;DR: In this article, three different observers are developed for the estimation of slip ratios and longitudinal tire forces, based on the types of sensors available, including engine torque, brake torque, and GPS measurements.
Abstract: It is well recognized in the automotive research community that knowledge of the real-time tire-road friction coefficient can be extremely valuable for active safety applications, including traction control, yaw stability control and rollover prevention. Previous research results in literature have focused on the estimation of average tire-road friction coefficient for the entire vehicle. This paper explores the development of algorithms for reliable estimation of independent friction coefficients at each individual wheel of the vehicle. Three different observers are developed for the estimation of slip ratios and longitudinal tire forces, based on the types of sensors available. After estimation of slip ratio and tire force, the friction coefficient is identified using a recursive least-squares parameter identification formulation. The observers include one that utilizes engine torque, brake torque, and GPS measurements, one that utilizes torque measurements and an accelerometer and one that utilizes GPS measurements and an accelerometer. The developed algorithms are first evaluated in simulation and then evaluated experimentally on a Volvo XC90 sport utility vehicle. Experimental results demonstrate the feasibility of estimating friction coefficients at the individual wheels reliably and quickly. The sensitivities of the observers to changes in vehicle parameters are evaluated and comparisons of robustness of the observers are provided.

301 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
79% related
Internal combustion engine
130.5K papers, 1M citations
78% related
Adaptive control
60.1K papers, 1.2M citations
77% related
Control system
129K papers, 1.5M citations
76% related
Mobile robot
66.7K papers, 1.1M citations
74% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202260
202133
202073
2019106
201870