Topic
Tractography
About: Tractography is a research topic. Over the lifetime, 4142 publications have been published within this topic receiving 201297 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres.
Abstract: Anisotropic water diffusion in neural fibres such as nerve, white matter in spinal cord, or white matter in brain forms the basis for the utilization of diffusion tensor imaging (DTI) to track fibre pathways. The fact that water diffusion is sensitive to the underlying tissue microstructure provides a unique method of assessing the orientation and integrity of these neural fibres, which may be useful in assessing a number of neurological disorders. The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres. The emphasis of the review will be on model neurological systems both in vitro and in vivo. A systematic discussion of the possible sources of anisotropy and their evaluation will be presented followed by an overview of various studies of restricted diffusion and compartmentation as they relate to anisotropy. Pertinent pathological models, developmental studies and theoretical analyses provide further insight into the basis of anisotropic diffusion and its potential utility in the nervous system.
4,216 citations
TL;DR: Quantitative-diffusion-tensor MRI consists of deriving and displaying parameters that resemble histological or physiological stains, i.e., that characterize intrinsic features of tissue microstructure and microdynamics that are objective, and insensitive to the choice of laboratory coordinate system.
Abstract: Quantitative-diffusion-tensor MRI consists of deriving and displaying parameters that resemble histological or physiological stains, i.e., that characterize intrinsic features of tissue microstructure and microdynamics. Specifically, these parameters are objective, and insensitive to the choice of laboratory coordinate system. Here, these two properties are used to derive intravoxel measures of diffusion isotropy and the degree of diffusion anisotropy, as well as intervoxel measures of structural similarity, and fiber-tract organization from the effective diffusion tensor, D, which is estimated in each voxel. First, D is decomposed into its isotropic and anisotropic parts, [D] I and D - [D] I, respectively (where [D] = Trace(D)/3 is the mean diffusivity, and I is the identity tensor). Then, the tensor (dot) product operator is used to generate a family of new rotationally and translationally invariant quantities. Finally, maps of these quantitative parameters are produced from high-resolution diffusion tensor images (in which D is estimated in each voxel from a series of 2D-FT spin-echo diffusion-weighted images) in living cat brain. Due to the high inherent sensitivity of these parameters to changes in tissue architecture (i.e., macromolecular, cellular, tissue, and organ structure) and in its physiologic state, their potential applications include monitoring structural changes in development, aging, and disease.
4,064 citations
TL;DR: The diagonal and off-diagonal elements of the effective self-diffusion tensor, Deff, are related to the echo intensity in an NMR spin-echo experiment.
Abstract: The diagonal and off-diagonal elements of the effective self-diffusion tensor, Deff, are related to the echo intensity in an NMR spin-echo experiment. This relationship is used to design experiments from which Deff is estimated. This estimate is validated using isotropic and anisotropic media, i.e., water and skeletal muscle. It is shown that significant errors are made in diffusion NMR spectroscopy and imaging of anisotropic skeletal muscle when off-diagonal elements of Deff are ignored, most notably the loss of information needed to determine fiber orientation. Estimation of Deff provides the theoretical basis for a new MRI modality, diffusion tensor imaging, which provides information about tissue microstructure and its physiologic state not contained in scalar quantities such as T1, T2, proton density, or the scalar apparent diffusion constant.
3,645 citations
TL;DR: It is shown that neuronal pathways in the rat brain can be probed in situ using high‐resolution three‐dimensional diffusion magnetic resonance imaging and a newly designed tracking approach.
Abstract: The relationship between brain structure and complex behavior is governed by large-scale neurocognitive networks. The availability of a noninvasive technique that can visualize the neuronal projections connecting the functional centers should therefore provide new keys to the understanding of brain function. By using high-resolution three-dimensional diffusion magnetic resonance imaging and a newly designed tracking approach, we show that neuronal pathways in the rat brain can be probed in situ. The results are validated through comparison with known anatomical locations of such fibers.
3,495 citations
TL;DR: The concepts behind diffusion tensor imaging are reviewed and potential applications, including fiber tracking in the brain, which, in combination with functional MRI, might open a window on the important issue of connectivity.
Abstract: The success of diffusion magnetic resonance imaging (MRI) is deeply rooted in the powerful concept that during their random, diffusion-driven displacements molecules probe tissue structure at a microscopic scale well beyond the usual image resolution. As diffusion is truly a three-dimensional process, molecular mobility in tissues may be anisotropic, as in brain white matter. With diffusion tensor imaging (DTI), diffusion anisotropy effects can be fully extracted, characterized, and exploited, providing even more exquisite details on tissue microstructure. The most advanced application is certainly that of fiber tracking in the brain, which, in combination with functional MRI, might open a window on the important issue of connectivity. DTI has also been used to demonstrate subtle abnormalities in a variety of diseases (including stroke, multiple sclerosis, dyslexia, and schizophrenia) and is currently becoming part of many routine clinical protocols. The aim of this article is to review the concepts behind DTI and to present potential applications.
3,353 citations