scispace - formally typeset
Search or ask a question
Topic

Traffic generation model

About: Traffic generation model is a research topic. Over the lifetime, 11030 publications have been published within this topic receiving 234186 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput, and the gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.
Abstract: This paper proposes COPE, a new architecture for wireless mesh networks. In addition to forwarding packets, routers mix (i.e., code) packets from different sources to increase the information content of each transmission. We show that intelligently mixing packets increases network throughput. Our design is rooted in the theory of network coding. Prior work on network coding is mainly theoretical and focuses on multicast traffic. This paper aims to bridge theory with practice; it addresses the common case of unicast traffic, dynamic and potentially bursty flows, and practical issues facing the integration of network coding in the current network stack. We evaluate our design on a 20-node wireless network, and discuss the results of the first testbed deployment of wireless network coding. The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput. The gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.

2,190 citations

Proceedings ArticleDOI
01 Nov 2010
TL;DR: An empirical study of the network traffic in 10 data centers belonging to three different categories, including university, enterprise campus, and cloud data centers, which includes not only data centers employed by large online service providers offering Internet-facing applications but also data centers used to host data-intensive (MapReduce style) applications.
Abstract: Although there is tremendous interest in designing improved networks for data centers, very little is known about the network-level traffic characteristics of data centers today. In this paper, we conduct an empirical study of the network traffic in 10 data centers belonging to three different categories, including university, enterprise campus, and cloud data centers. Our definition of cloud data centers includes not only data centers employed by large online service providers offering Internet-facing applications but also data centers used to host data-intensive (MapReduce style) applications). We collect and analyze SNMP statistics, topology and packet-level traces. We examine the range of applications deployed in these data centers and their placement, the flow-level and packet-level transmission properties of these applications, and their impact on network and link utilizations, congestion and packet drops. We describe the implications of the observed traffic patterns for data center internal traffic engineering as well as for recently proposed architectures for data center networks.

2,119 citations

Journal ArticleDOI
TL;DR: This article shows how the evolution of multi-commodity traffic flows over complex networks can be predicted over time, based on a simple macroscopic computer representation of traffic flow that is consistent with the kinematic wave theory under all traffic conditions.
Abstract: This article shows how the evolution of multi-commodity traffic flows over complex networks can be predicted over time, based on a simple macroscopic computer representation of traffic flow that is consistent with the kinematic wave theory under all traffic conditions. The method does not use ad hoc procedures to treat special situations. After a brief review of the basic model for one link, the article describes how three-legged junctions can be modeled. It then introduces a numerical procedure for networks, assuming that a time-varying origin-destination (O-D) table is given and that the proportion of turns at every junction is known. These assumptions are reasonable for numerical analysis of disaster evacuation plans. The results are then extended to the case where, instead of the turning proportions, the best routes to each destination from every junction are known at all times. For technical reasons explained in the text, the procedure is more complicated in this case, requiring more computer memory and more time for execution. The effort is estimated to be about an order of magnitude greater than for the static traffic assignment problem on a network of the same size. The procedure is ideally suited for parallel computing. It is hoped that the results in the article will lead to more realistic models of freeway flow, disaster evacuations and dynamic traffic assignment for the evening commute.

1,891 citations

Proceedings ArticleDOI
10 Dec 2015
TL;DR: Countering the unavailability of network benchmark data set challenges, this paper examines a UNSW-NB15 data set creation which has a hybrid of the real modern normal and the contemporary synthesized attack activities of the network traffic.
Abstract: One of the major research challenges in this field is the unavailability of a comprehensive network based data set which can reflect modern network traffic scenarios, vast varieties of low footprint intrusions and depth structured information about the network traffic. Evaluating network intrusion detection systems research efforts, KDD98, KDDCUP99 and NSLKDD benchmark data sets were generated a decade ago. However, numerous current studies showed that for the current network threat environment, these data sets do not inclusively reflect network traffic and modern low footprint attacks. Countering the unavailability of network benchmark data set challenges, this paper examines a UNSW-NB15 data set creation. This data set has a hybrid of the real modern normal and the contemporary synthesized attack activities of the network traffic. Existing and novel methods are utilised to generate the features of the UNSWNB15 data set. This data set is available for research purposes and can be accessed from the link.

1,745 citations

Journal ArticleDOI
TL;DR: The degradation in network performance due to unregulated traffic is quantified and it is proved that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency.
Abstract: We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route traffic such that the sum of all travel times---the total latency---is minimized.In many settings, it may be expensive or impossible to regulate network traffic so as to implement an optimal assignment of routes. In the absence of regulation by some central authority, we assume that each network user routes its traffic on the minimum-latency path available to it, given the network congestion caused by the other users. In general such a "selfishly motivated" assignment of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased network performance.In this article, we quantify the degradation in network performance due to unregulated traffic. We prove that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject to the condition that all traffic must be routed). We also consider the more general setting in which edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion. Here, the total latency of the routes chosen by unregulated selfish network users may be arbitrarily larger than the minimum possible total latency; however, we prove that it is no more than the total latency incurred by optimally routing twice as much traffic.

1,703 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
86% related
Wireless ad hoc network
49K papers, 1.1M citations
84% related
Wireless network
122.5K papers, 2.1M citations
84% related
Mobile computing
51.3K papers, 1M citations
84% related
Server
79.5K papers, 1.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202390
2022239
202149
202053
201964
201864