Topic
Traffic shaping
About: Traffic shaping is a research topic. Over the lifetime, 3930 publications have been published within this topic receiving 83564 citations. The topic is also known as: packet shaping.
Papers published on a yearly basis
Papers
More filters
[...]
01 Dec 1998
TL;DR: An architecture for implementing scalable service differentiation in the Internet achieves scalability by aggregating traffic classification state which is conveyed by means of IP-layer packet marking using the DS field [DSFIELD].
Abstract: This document defines an architecture for implementing scalable service differentiation in the Internet. This architecture achieves scalability by aggregating traffic classification state which is conveyed by means of IP-layer packet marking using the DS field [DSFIELD]. Packets are classified and marked to receive a particular per-hop forwarding behavior on nodes along their path. Sophisticated classification, marking, policing, and shaping operations need only be implemented at network boundaries or hosts. Network resources are allocated to traffic streams by service provisioning policies which govern how traffic is marked and conditioned upon entry to a differentiated services-capable network, and how that traffic is forwarded within that network. A wide variety of services can be implemented on top of these building blocks.
6,225 citations
[...]
TL;DR: It is argued that router mechanisms are needed to identify and restrict the bandwidth of selected high-bandwidth best-effort flows in times of congestion, and several general approaches are discussed for identifying those flows suitable for bandwidth regulation.
Abstract: This paper considers the potentially negative impacts of an increasing deployment of non-congestion-controlled best-effort traffic on the Internet. These negative impacts range from extreme unfairness against competing TCP traffic to the potential for congestion collapse. To promote the inclusion of end-to-end congestion control in the design of future protocols using best-effort traffic, we argue that router mechanisms are needed to identify and restrict the bandwidth of selected high-bandwidth best-effort flows in times of congestion. The paper discusses several general approaches for identifying those flows suitable for bandwidth regulation. These approaches are to identify a high-bandwidth flow in times of congestion as unresponsive, "not TCP-friendly", or simply using disproportionate bandwidth. A flow that is not "TCP-friendly" is one whose long-term arrival rate exceeds that of any conformant TCP in the same circumstances. An unresponsive flow is one failing to reduce its offered load at a router in response to an increased packet drop rate, and a disproportionate-bandwidth flow is one that uses considerably more bandwidth than other flows in a time of congestion.
1,769 citations
[...]
TL;DR: The degradation in network performance due to unregulated traffic is quantified and it is proved that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency.
Abstract: We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route traffic such that the sum of all travel times---the total latency---is minimized.In many settings, it may be expensive or impossible to regulate network traffic so as to implement an optimal assignment of routes. In the absence of regulation by some central authority, we assume that each network user routes its traffic on the minimum-latency path available to it, given the network congestion caused by the other users. In general such a "selfishly motivated" assignment of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased network performance.In this article, we quantify the degradation in network performance due to unregulated traffic. We prove that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject to the condition that all traffic must be routed). We also consider the more general setting in which edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion. Here, the total latency of the routes chosen by unregulated selfish network users may be arbitrarily larger than the minimum possible total latency; however, we prove that it is no more than the total latency incurred by optimally routing twice as much traffic.
1,593 citations
[...]
TL;DR: It is argued that controlled link-sharing is an essential component that can provide gateways with the flexibility to accommodate emerging applications and network protocols.
Abstract: Discusses the use of link-sharing mechanisms in packet networks and presents algorithms for hierarchical link-sharing. Hierarchical link-sharing allows multiple agencies, protocol families, or traffic types to share the bandwidth on a link in a controlled fashion. Link-sharing and real-time services both require resource management mechanisms at the gateway. Rather than requiring a gateway to implement separate mechanisms for link-sharing and real-time services, the approach in the paper is to view link-sharing and real-time service requirements as simultaneous, and in some respect complementary, constraints at a gateway that can be implemented with a unified set of mechanisms. While it is not possible to completely predict the requirements that might evolve in the Internet over the next decade, the authors argue that controlled link-sharing is an essential component that can provide gateways with the flexibility to accommodate emerging applications and network protocols. >
1,172 citations
[...]
TL;DR: Observations on the patterns and characteristics of wide-area Internet traffic, as recorded by MCI's OC-3 traffic monitors are presented, revealing the characteristics of the traffic in terms of packet sizes, flow duration, volume, and percentage composition by protocol and application.
Abstract: The Internet is rapidly growing in number of users, traffic levels, and topological complexity. At the same time it is increasingly driven by economic competition. These developments render the characterization of network usage and workloads more difficult, and yet more critical. Few recent studies have been published reporting Internet backbone traffic usage and characteristics. At MCI, we have implemented a high-performance, low-cost monitoring system that can capture traffic and perform analyses. We have deployed this monitoring tool on OC-3 trunks within the Internet MCI's backbone and also within the NSF-sponsored vBNS. This article presents observations on the patterns and characteristics of wide-area Internet traffic, as recorded by MCI's OC-3 traffic monitors. We report on measurements from two OC-3 trunks in MCI's commercial Internet backbone over two time ranges (24-hour and 7-day) in the presence of up to 240,000 flows. We reveal the characteristics of the traffic in terms of packet sizes, flow duration, volume, and percentage composition by protocol and application, as well as patterns seen over the two time scales.
1,162 citations