scispace - formally typeset
Search or ask a question
Topic

Train

About: Train is a research topic. Over the lifetime, 7532 publications have been published within this topic receiving 74102 citations. The topic is also known as: railway train & railroad train.


Papers
More filters
Book
21 Sep 2009
TL;DR: This document discusses the design and control principles of the Hybrid Electric Drive Trains, and the designs of the Drive Train Engine/Generator Power Design and Energy Design of Energy Storage Appendices Index.
Abstract: Environmental Impact and History of Modern Transportation Air Pollution Global Warming Petroleum Resources Induced Costs Importance of Different Transportation Development Strategies to Future Oil Supply History of EVs History of HEVs History of Fuel Cell Vehicles Fundamentals of Vehicle Propulsion and Brake General Description of Vehicle Movement Vehicle Resistance Dynamic Equation Tire-Ground Adhesion and Maximum Tractive Effort Power Train Tractive Effort and Vehicle Speed Vehicle Power Plant and Transmission Characteristics Vehicle Performance Operating Fuel Economy Brake Performance Internal Combustion Engines 4S, Spark-Ignited IC Engines 4S, Compression-Ignition IC Engines 2S Engines Wankel Rotary Engines Stirling Engines Gas Turbine Engines Quasi-Isothermal Brayton Cycle Engines Electric Vehicles Configurations of EVs Performance of EVs Tractive Effort in Normal Driving Energy Consumption Hybrid Electric Vehicles Concept of Hybrid Electric Drive Trains Architectures of Hybrid Electric Drive Trains Electric Propulsion Systems DC Motor Drives Induction Motor Drives Permanent Magnetic BLDC Motor Drives SRM Drives Design Principle of Series (Electrical Coupling) Hybrid Electric Drive Train Operation Patterns Control Strategies Design Principles of a Series (Electrical Coupling) Hybrid Drive Train Design Example Parallel (Mechanically Coupled) Hybrid Electric Drive Train Design Drive Train Configuration and Design Objectives Control Strategies Parametric Design of a Drive Train Simulations Design and Control Methodology of Series-Parallel (Torque and Speed Coupling) Hybrid Drive Train Drive Train Configuration Drive Train Control Methodology Drive Train Parameters Design Simulation of an Example Vehicle Design and Control Principles of Plug-In Hybrid Electric Vehicles Statistics of Daily Driving Distance Energy Management Strategy Energy Storage Design Mild Hybrid Electric Drive Train Design Energy Consumed in Braking and Transmission Parallel Mild Hybrid Electric Drive Train Series-Parallel Mild Hybrid Electric Drive Train Peaking Power Sources and Energy Storages Electrochemical Batteries Ultracapacitors Ultra-High-Speed Flywheels Hybridization of Energy Storages Fundamentals of Regenerative Breaking Braking Energy Consumed in Urban Driving Braking Energy versus Vehicle Speed Braking Energy versus Braking Power Braking Power versus Vehicle Speed Braking Energy versus Vehicle Deceleration Rate Braking Energy on Front and Rear Axles Brake System of EV, HEV, and FCV Fuel Cells Operating Principles of Fuel Cells Electrode Potential and Current-Voltage Curve Fuel and Oxidant Consumption Fuel Cell System Characteristics Fuel Cell Technologies Fuel Supply Non-Hydrogen Fuel Cells Fuel Cell Hybrid Electric Drive Train Design Configuration Control Strategy Parametric Design Design Example Design of Series Hybrid Drive Train for Off-Road Vehicles Motion Resistance Tracked Series Hybrid Vehicle Drive Train Architecture Parametric Design of the Drive Train Engine/Generator Power Design Power and Energy Design of Energy Storage Appendices Index

1,221 citations

Journal ArticleDOI
TL;DR: A survey of recent optimization models for the most commonly studied rail transportation problems is presented and a classification of models is proposed and their important characteristics are described by focusing on model structure and algorithmic aspects.
Abstract: The aim of this paper is to present a survey of recent optimization models for the most commonly studied rail transportation problems. For each group of problems, we propose a classification of models and describe their important characteristics by focusing on model structure and algorithmic aspects. The review mainly concentrates on routing and scheduling problems since they represent the most important portion of the planning activities performed by railways. Routing models surveyed concern the operating policies for freight transportation and railcar fleet management, whereas scheduling models address the dispatching of trains and the assignment of locomotives and cars. A brief discussion of analytical yard and line models is also presented. The emphasis is on recent contributions, but several older yet important works are also cited.

780 citations

Journal ArticleDOI
TL;DR: The analysis of the arrival pattern shows that the arrival processes are neither Poisson nor compound Poisson, and an alternative model called "packet train" is proposed, which consists of a number of packet streams between various pairs of nodes on the network.
Abstract: Traffic measurements on a ring local area computer network at the Massachusetts Institute of Technology are presented. The analysis of the arrival pattern shows that the arrival processes are neither Poisson nor compound Poisson. An alternative model called "packet train" is proposed. In the train model, the traffic on the network consists of a number of packet streams between various pairs of nodes on the network. Each node-pair stream (or node-pair process, as we call them) consists of a number of trains. Each train consists of a number of packets (or cars) going in either direction (from node A to B or from node B to A). The intercar gap is large (compared to packet transmission time) and random. The intertrain time is even larger. The Poisson and the compound Poisson arrivals are shown to be special cases of the train arrival model. Another important observation is that the packet arrivals exhibit a "source locality." If a packet is seen on the network going from A to B, the probability of the next packet going from A to B or from B to A is very high. Implications of the train arrivals and of source locality on the design of bridges, gateways, and reservation protocols are discussed. A numbet of open problems requiring development of analysis techniques for systems with train arrival processes are also described.

592 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the different elements of HST operation with the aim of characterizing HST operations and putting in context its impact in terms of what it is best designed for and what it can deliver.

486 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art on the aerodynamic and aeroacoustic problems of high-speed railway train and highlights proper control strategies to alleviate undesirable aerodynamic problems.

446 citations


Network Information
Related Topics (5)
Communications system
88.1K papers, 1M citations
73% related
Control system
129K papers, 1.5M citations
73% related
Genetic algorithm
67.5K papers, 1.2M citations
72% related
Robustness (computer science)
94.7K papers, 1.6M citations
72% related
Scheduling (computing)
78.6K papers, 1.3M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023856
20221,779
2021377
2020464
2019485