scispace - formally typeset
Search or ask a question
Topic

Transcranial direct-current stimulation

About: Transcranial direct-current stimulation is a research topic. Over the lifetime, 6367 publications have been published within this topic receiving 216756 citations. The topic is also known as: pulsed electromagnetic field therapy & Transcranial Direct Current Stimulation.


Papers
More filters
Journal ArticleDOI
TL;DR: Transcranial electrical stimulation using weak current may be a promising tool to modulate cerebral excitability in a non‐invasive, painless, reversible, selective and focal way.
Abstract: The approach taken in this study to produce localised changes of cerebral excitability in the intact human was modulation of neuronal excitability by weak electric currents applied transcranially. So far, this technique has mainly been used in animal research, primarily through modulation of the resting membrane potential (Terzuolo & Bullock, 1956; Creutzfeld et al. 1962; Eccles et al. 1962; Bindman et al. 1964; Purpura & McMurtry, 1965; Artola et al. 1990; Malenka & Nicoll, 1999). In general, cerebral excitability was diminished by cathodal stimulation, which hyperpolarises neurones. Anodal stimulation caused neuronal depolarisation, leading to an increase in excitability (Bindman et al. 1962; Purpura & McMurtry, 1965), as was shown by spontaneous neuronal discharges and the amplitudes of evoked potentials (Landau et al. 1964; Purpura & McMurtry, 1965; Gorman, 1966). However, in single cortical layers opposite effects were seen (Purpura & McMurtry, 1965), underlining the fact that the effects of DC stimulation depend on the interaction of electric flow direction and neuronal geometry. Enduring effects of 5 h and longer have been described if the stimulation itself lasts sufficiently long, about 10–30 min. These prolonged effects are not simply due to prolonged membrane potential shifts or recurrent excitation, because intermittent complete cancellation of electrical brain activity by hypothermia does not abolish them (Gartside, 1968a,b). Long-term potentiation (LTP) and long-term depression (LTD) have been proposed as the likely candidates for this phenomenon (Hattori et al. 1990; Moriwaki, 1991; Islam et al. 1995; Malenka & Nicoll, 1999). The concept described here was an attempt to induce neuronal excitability changes in man by application of weak DC stimulation through the intact skull. It has already been demonstrated within invasive presurgical epilepsy diagnostics that intracranial currents of sufficient strength can be achieved in humans by stimulation with surface electrodes at intensities of up to 1.5 mA (Dymond et al. 1975). A suitable candidate for evaluating cortical excitability changes is transcranial magnetic stimulation (TMS), because it allows the quantification of motor-cortical neurone responses in a painless and non-invasive manner. The amplitude of the resulting motor-evoked potential (MEP) represents the excitability of the motor system. In the following, we confirm the principal possibility of altering cortical excitability by applying weak DC. Furthermore we show that systematic DC stimulation with minimum stimulation duration and intensity is necessary for an effective application of weak current in humans. This is of particular importance for inducing effects which outlast the duration of stimulation.

4,672 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art for transcranial direct current stimulation (tDCS) is offered, which suggests that it can induce beneficial effects in brain disorders and facilitate and standardize future tDCS studies.

2,539 citations

Journal ArticleDOI
TL;DR: The authors show that in the human transcranial direct current stimulation is able to induce sustained cortical excitability elevations, and this technique is a potentially valuable tool in neuroplasticity modulation.
Abstract: The authors show that in the human transcranial direct current stimulation is able to induce sustained cortical excitability elevations. As revealed by transcranial magnetic stimulation, motor cortical excitability increased approximately 150% above baseline for up to 90 minutes after the end of stimulation. The feasibility of inducing long-lasting excitability modulations in a noninvasive, painless, and reversible way makes this technique a potentially valuable tool in neuroplasticity modulation.

2,289 citations

Journal ArticleDOI
TL;DR: There is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rT MS of the left dorsolateral prefrontal cortex (DLPFC).

1,554 citations

Journal ArticleDOI
TL;DR: The feasibility of using tDCS in double-blind, sham-controlled randomized trials in clinical Neurorehabilitation is supported and tDCS could evolve into a useful tool, in addition to TMS, to modulate cortical activity in Neurore Rehabilitation.

1,465 citations


Network Information
Related Topics (5)
Prefrontal cortex
24K papers, 1.9M citations
89% related
Working memory
26.5K papers, 1.6M citations
86% related
Dopaminergic
29K papers, 1.4M citations
84% related
Hippocampal formation
30.6K papers, 1.7M citations
83% related
Hippocampus
34.9K papers, 1.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023521
20221,130
2021721
2020706
2019730
2018664