scispace - formally typeset
Search or ask a question

Showing papers on "Transcription (biology) published in 2011"


Journal ArticleDOI
TL;DR: Global gene expression analysis demonstrated that exogenous IRF5 upregulated or downregulated expression of established phenotypic markers of M1 or M2 macrophages, respectively, suggesting a critical role for IRf5 in M1 macrophage polarization and defining a previously unknown function forIRF5 as a transcriptional repressor.
Abstract: Polymorphisms in the gene encoding the transcription factor IRF5 that lead to higher mRNA expression are associated with many autoimmune diseases. Here we show that IRF5 expression in macrophages was reversibly induced by inflammatory stimuli and contributed to the plasticity of macrophage polarization. High expression of IRF5 was characteristic of M1 macrophages, in which it directly activated transcription of the genes encoding interleukin 12 subunit p40 (IL-12p40), IL-12p35 and IL-23p19 and repressed the gene encoding IL-10. Consequently, those macrophages set up the environment for a potent T helper type 1 (T(H)1)-T(H)17 response. Global gene expression analysis demonstrated that exogenous IRF5 upregulated or downregulated expression of established phenotypic markers of M1 or M2 macrophages, respectively. Our data suggest a critical role for IRF5 in M1 macrophage polarization and define a previously unknown function for IRF5 as a transcriptional repressor.

991 citations


Journal ArticleDOI
19 May 2011-Nature
TL;DR: It is proposed that TET1 fine-tunes transcription, opposes aberrant DNA methylation at CpG-rich sequences and thereby contributes to the regulation ofDNA methylation fidelity.
Abstract: Enzymes catalysing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression and maintaining cellular identity. Recently, TET1 was found to hydroxylate the methyl group of mC, converting it to 5-hydroxymethyl cytosine (hmC). Here we show that TET1 binds throughout the genome of embryonic stem cells, with the majority of binding sites located at transcription start sites (TSSs) of CpG-rich promoters and within genes. The hmC modification is found in gene bodies and in contrast to mC is also enriched at CpG-rich TSSs. We provide evidence further that TET1 has a role in transcriptional repression. TET1 binds a significant proportion of Polycomb group target genes. Furthermore, TET1 associates and colocalizes with the SIN3A co-repressor complex. We propose that TET1 fine-tunes transcription, opposes aberrant DNA methylation at CpG-rich sequences and thereby contributes to the regulation of DNA methylation fidelity.

978 citations


Journal ArticleDOI
TL;DR: In this article, an ultra-high-density array that tiles the promoters of 56 cell-cycle genes was used to interrogate 108 samples representing diverse perturbations, identifying 216 transcribed regions that encode putative lncRNAs, many with RT-PCR-validated periodic expression during the cell cycle.
Abstract: Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs, many with RT-PCR-validated periodic expression during the cell cycle, show altered expression in human cancers and are regulated in expression by specific oncogenic stimuli, stem cell differentiation or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53-dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell-growth control.

969 citations


Journal ArticleDOI
30 Sep 2011-Science
TL;DR: Comprising tandem, polymorphic amino acid repeats that individually specify contiguous nucleotides in DNA, this domain is being deployed in DNA targeting for applications ranging from understanding gene function in model organisms to improving traits in crop plants to treating genetic disorders in people.
Abstract: Generating and applying new knowledge from the wealth of available genomic information is hindered, in part, by the difficulty of altering nucleotide sequences and expression of genes in living cells in a targeted fashion. Progress has been made in engineering DNA binding domains to direct proteins to particular sequences for mutagenesis or manipulation of transcription; however, achieving the requisite specificities has been challenging. Transcription activator-like (TAL) effectors of plant pathogenic bacteria contain a modular DNA binding domain that appears to overcome this challenge. Comprising tandem, polymorphic amino acid repeats that individually specify contiguous nucleotides in DNA, this domain is being deployed in DNA targeting for applications ranging from understanding gene function in model organisms to improving traits in crop plants to treating genetic disorders in people.

969 citations


01 Jun 2011
TL;DR: This work uses an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations and identifies 216 transcribed regions that encode putative lncRNAs, many with RT-PCR–validated periodic expression during the cell cycle.
Abstract: Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs, many with RT-PCR-validated periodic expression during the cell cycle, show altered expression in human cancers and are regulated in expression by specific oncogenic stimuli, stem cell differentiation or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53-dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell-growth control.

933 citations


Journal ArticleDOI
22 Apr 2011-Science
TL;DR: This work established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells, demonstrating that bursting kinetics are highly gene-specific.
Abstract: In prokaryotes and eukaryotes, most genes appear to be transcribed during short periods called transcriptional bursts, interspersed by silent intervals. We describe how such bursts generate gene-specific temporal patterns of messenger RNA (mRNA) synthesis in mammalian cells. To monitor transcription at high temporal resolution, we established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells. Mathematical modeling identified gene-specific on- and off-switching rates in transcriptional activity and mean numbers of mRNAs produced during the bursts. Transcriptional kinetics were markedly altered by cis-regulatory DNA elements. Our analysis demonstrated that bursting kinetics are highly gene-specific, reflecting refractory periods during which genes stay inactive for a certain time before switching on again.

891 citations


Journal ArticleDOI
TL;DR: Structural, mechanistic and molecular biological studies have started to reveal how these conserved proteins can perform such diverse functions and how accessory proteins have a central role in their regulation.
Abstract: RNA helicases of the DEAD box family are present in all eukaryotic cells and in many bacteria and Archaea. These highly conserved enzymes are required for RNA metabolism from transcription to degradation and are therefore important players in gene expression. DEAD box proteins use ATP to unwind short duplex RNA in an unusual fashion and remodel RNA-protein complexes, but they can also function as ATP-dependent RNA clamps to provide nucleation centres that establish larger RNA-protein complexes. Structural, mechanistic and molecular biological studies have started to reveal how these conserved proteins can perform such diverse functions and how accessory proteins have a central role in their regulation.

867 citations


Journal ArticleDOI
16 Jun 2011-Nature
TL;DR: Evidence is presented that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer.
Abstract: Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA) based on global nuclear run-on sequencing (GRO-seq) analysis, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer-promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.

803 citations


Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: An approach (native elongating transcript sequencing, NET-seq), based on deep sequencing of 3′ ends of nascent transcripts associated with RNA polymerase, to monitor transcription at nucleotide resolution is presented, revealing pervasive polymerase pausing and backtracking throughout the body of transcripts.
Abstract: Recent studies of transcription have revealed a level of complexity not previously appreciated even a few years ago, both in the intricate use of post-initiation control and the mass production of rapidly degraded transcripts. Dissection of these pathways requires strategies for precisely following transcripts as they are being produced. Here we present an approach (native elongating transcript sequencing, NET-seq), based on deep sequencing of 3' ends of nascent transcripts associated with RNA polymerase, to monitor transcription at nucleotide resolution. Application of NET-seq in Saccharomyces cerevisiae reveals that although promoters are generally capable of divergent transcription, the Rpd3S deacetylation complex enforces strong directionality to most promoters by suppressing antisense transcript initiation. Our studies also reveal pervasive polymerase pausing and backtracking throughout the body of transcripts. Average pause density shows prominent peaks at each of the first four nucleosomes, with the peak location occurring in good agreement with in vitro biophysical measurements. Thus, nucleosome-induced pausing represents a major barrier to transcriptional elongation in vivo.

773 citations


Journal ArticleDOI
TL;DR: The use of TALENs is reported to disrupt both of the two endogenous zebrafish genes the authors targeted and show that the mutations are transmitted through the germ line, confirming that TALens could induce DSBs and activate the DNA repair pathway through nonhomologous endjoining in vivo.
Abstract: 699 To the Editor: Studies of targeted gene modifications are of great interest in basic research as well as for clinical and agricultural applications1. In the February issue of Nature Biotechnology, two articles reported genomic modifications using transcription activator-like (TAL) effectors2,3. Using fusion proteins, each comprising a TAL effector DNA binding domain and a FokI cleavage domain, Miller et al.2 reported that TAL effector nucleases (TALENs) successfully disrupted target genes in cultured human cells. Zhang et al.3 showed that TAL effectors can be used to regulate endogenous gene transcription. Compared with zinc-finger proteins4,5, TAL effectors permit more predictable and specific binding to target DNA6, and therefore allow researchers to engineer genomes precisely without the need for laborious screening to identify a DNA binding domain with the requisite specificity. TALENs can induce DNA double-stranded breaks (DSBs) in yeast7. Gene targeting using TALENs has also been achieved in nematodes8 and human pluripotent cells9. However, it has not, to our knowledge, yet been demonstrated in a vertebrate organism. Here we report the use of TALENs to disrupt both of the two endogenous zebrafish genes we targeted and show that the mutations are transmitted through the germ line. The complexity of constructing customized, sequence-specific TAL effectors restricts broad application of TALEN to genome engineering. Recently, several strategies for constructing TAL effector repeats using type IIS endonucleases have been reported3,10–14. As an alternative approach, we constructed sequence-specific TAL effector repeats using a method called unit assembly, which involves the isocaudamer restriction enzymes, NheI and SpeI (Supplementary Fig. 1). This method involves four basic single-unit vectors, which recognize the individual nucleotides A, T, C and G (Supplementary Table 1 and Supplementary Sequences). Simple double-restriction-enzyme digestion (NheI + HindIII or SpeI + HindIII), followed by ligation, yields a collection of double-unit elements that each recognize two tandem nucleotides (Supplementary Fig. 1). Having prepared all 16 possible combinations of double units, we used these elements for subsequent construction of TAL effector repeats by serial cycles of digestion and ligation. To construct the TALEN expression vectors, we subcloned the TAL effector repeats into a vector containing the FokI cleavage domain and other necessary components, including the 5′ terminal sequence, the last 0.5 unit encoding the repeat variable di-residue (RVD) NG and the 3′ terminal sequence of pthA from Xanthomonas axonopodis pv. citri (Supplementary Fig. 2 and Supplementary Methods). We selected tnikb (GenBank gene: 556959), which encodes TRAF2 and NCK interacting kinase, as an endogenous gene to test whether customized TALENs can modify the zebrafish (Danio rerio) germ line. The site we chose to target is located at the junction of intron 1 and exon 2, with 15 bp and 16 bp of DNA on the left and the right binding sites, respectively. These are separated by a 15-bp spacer DNA containing a BamHI site (Fig. 1a and Supplementary Fig. 3). To detect mutations, we PCR amplified a 353-bp DNA fragment. Complete digestion with BamHI produced two fragments of 258 bp and 95 bp, as shown in control embryos (Fig. 1). By contrast, there was an apparently intact DNA fragment in embryos injected with mRNA encoding TALENs (Fig. 1) and sequencing results confirmed that indels were induced at the target site (Supplementary Fig. 4). These results confirmed that TALENs could induce DSBs and activate the DNA repair pathway through nonhomologous endjoining in vivo. The NK RVD has been reported to bind to G more specifically than NN does2,15. We constructed a pair of alternative TALENs that binds to the same target site of tnikb by replacing the NN RVD with NK (Supplementary Fig. 3). Survival rates were similar for embryos injected with mRNAs encoding either NNor NKcontaining TALENs (Fig. 1b). However, Heritable gene targeting in zebrafish using customized TALENs

748 citations


Journal ArticleDOI
TL;DR: Understanding the evolution of regulatory sRNAs remains a challenge; sRNA genes show evidence of duplication and horizontal transfer but also could be evolved from tRNAs, mRNAs or random transcription.
Abstract: SUMMARY Small RNA regulators (sRNAs) have been identified in a wide range of bacteria and found to playcriticalregulatoryrolesinmanyprocesses.ThemajorfamiliesofsRNAsincludetrueantisense RNAs, synthesized from the strand complementary to the mRNA they regulate, sRNAs that also act by pairing but have limited complementarity with their targets, and sRNAs that regulate proteins by binding to and affecting protein activity. The sRNAs with limited complementarityare akin to eukaryotic microRNAs in theirability to modulate the activityand stability of multiple mRNAs. In many bacterial species, the RNA chaperone Hfq is required to promote pairing between these sRNAs and their target mRNAs. Understanding the evolution of regulatory sRNAs remains a challenge; sRNA genes show evidence of duplication and horizontal transfer but also could be evolved from tRNAs, mRNAs or random transcription.

Journal ArticleDOI
TL;DR: The results highlight the substrate and site specificities of HATs in cells, demonstrate the distinct roles of GCN5/PCAF‐ and CBP/p300‐mediated histone acetylations in gene activation, and suggest an important role of CBP/(p300)‐mediated H3K18/27ac in NR‐dependent transcription.
Abstract: Histone acetyltransferases (HATs) GCN5 and PCAF (GCN5/PCAF) and CBP and p300 (CBP/p300) are transcription co-activators. However, how these two distinct families of HATs regulate gene activation remains unclear. Here, we show deletion of GCN5/PCAF in cells specifically and dramatically reduces acetylation on histone H3K9 (H3K9ac) while deletion of CBP/p300 specifically and dramatically reduces acetylations on H3K18 and H3K27 (H3K18/27ac). A ligand for nuclear receptor (NR) PPARδ induces sequential enrichment of H3K18/27ac, RNA polymerase II (Pol II) and H3K9ac on PPARδ target gene Angptl4 promoter, which correlates with a robust Angptl4 expression. Inhibiting transcription elongation blocks ligand-induced H3K9ac, but not H3K18/27ac, on the Angptl4 promoter. Finally, we show GCN5/PCAF and GCN5/PCAF-mediated H3K9ac correlate with, but are surprisingly dispensable for, NR target gene activation. In contrast, CBP/p300 and their HAT activities are essential for ligand-induced Pol II recruitment on, and activation of, NR target genes. These results highlight the substrate and site specificities of HATs in cells, demonstrate the distinct roles of GCN5/PCAF- and CBP/p300-mediated histone acetylations in gene activation, and suggest an important role of CBP/p300-mediated H3K18/27ac in NR-dependent transcription.

Journal ArticleDOI
TL;DR: It is identified that contaminants, including double-stranded RNA, in nucleoside-modified in vitro-transcribed RNA are responsible for innate immune activation and their removal by high performance liquid chromatography results in mRNA that does not induce IFNs and inflammatory cytokines and is translated at 10- to 1000-fold greater levels in primary cells.
Abstract: In vitro-transcribed mRNA has great therapeutic potential to transiently express the encoded protein without the adverse effects of viral and DNA-based constructs. Mammalian cells, however, contain RNA sensors of the innate immune system that must be considered in the generation of therapeutic RNA. Incorporation of modified nucleosides both reduces innate immune activation and increases translation of mRNA, but residual induction of type I interferons (IFNs) and proinflammatory cytokines remains. We identify that contaminants, including double-stranded RNA, in nucleoside-modified in vitro-transcribed RNA are responsible for innate immune activation and their removal by high performance liquid chromatography (HPLC) results in mRNA that does not induce IFNs and inflammatory cytokines and is translated at 10- to 1000-fold greater levels in primary cells. Although unmodified mRNAs were translated significantly better following purification, they still induced high levels of cytokine secretion. HPLC purified nucleoside-modified mRNA is a powerful vector for applications ranging from ex vivo stem cell generation to in vivo gene therapy.

Journal ArticleDOI
TL;DR: A perspective on recent results regarding noncoding transcription in cancer progression is given, focusing on the emerging role of long intergenic nonc coding RNAs (lincRNAs), which exhibit distinct gene expression patterns in primary tumors and metastases.
Abstract: The process of cancer metastasis involves a series of sequential and complex steps. Here we give a perspective on recent results regarding noncoding transcription in cancer progression, focusing on the emerging role of long intergenic noncoding RNAs (lincRNAs). LincRNAs target chromatin modification complexes or RNA-binding proteins to alter gene expression programs. Similarly to miRNAs, lincRNAs exhibit distinct gene expression patterns in primary tumors and metastases. We discuss how lincRNAs can be used for cancer diagnosis and prognosis and serve as potential therapeutic targets. Cancer Res; 71(1); 3–7. ©2011 AACR.

Journal ArticleDOI
22 Apr 2011-Science
TL;DR: A method of fluctuation analysis of fluorescently labeled RNA is described to measure dynamics of nascent RNA—including initiation, elongation, and termination—at an active yeast locus and finds no transcriptional memory between initiation events, and elongation speed can vary by threefold throughout the cell cycle.
Abstract: Cellular messenger RNA levels are achieved by the combinatorial complexity of factors controlling transcription, yet the small number of molecules involved in these pathways fluctuates stochastically It has not yet been experimentally possible to observe the activity of single polymerases on an endogenous gene to elucidate how these events occur in vivo Here, we describe a method of fluctuation analysis of fluorescently labeled RNA to measure dynamics of nascent RNA—including initiation, elongation, and termination—at an active yeast locus We find no transcriptional memory between initiation events, and elongation speed can vary by threefold throughout the cell cycle By measuring the abundance and intranuclear mobility of an upstream transcription factor, we observe that the gene firing rate is directly determined by trans-activating factor search times

Journal ArticleDOI
TL;DR: Recent progress in this area with emphasis on the roles of Ca2+- and Ca2-/Ca2+/CaM-regulated transcription in stress responses is reviewed, emerging paradigms in the field are discussed, the areas that need further investigation are highlighted, and some promising novel high-throughput tools are presented.
Abstract: Abiotic and biotic stresses are major limiting factors of crop yields and cause billions of dollars of losses annually around the world. It is hoped that understanding at the molecular level how plants respond to adverse conditions and adapt to a changing environment will help in developing plants that can better cope with stresses. Acquisition of stress tolerance requires orchestration of a multitude of biochemical and physiological changes, and most of these depend on changes in gene expression. Research during the last two decades has established that different stresses cause signal-specific changes in cellular Ca2+ level, which functions as a messenger in modulating diverse physiological processes that are important for stress adaptation. In recent years, many Ca2+ and Ca2+/calmodulin (CaM) binding transcription factors (TFs) have been identified in plants. Functional analyses of some of these TFs indicate that they play key roles in stress signaling pathways. Here, we review recent progress in this area with emphasis on the roles of Ca2+- and Ca2+/CaM-regulated transcription in stress responses. We will discuss emerging paradigms in the field, highlight the areas that need further investigation, and present some promising novel high-throughput tools to address Ca2+-regulated transcriptional networks.

Journal ArticleDOI
TL;DR: This study combines metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide.
Abstract: Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.

Journal ArticleDOI
01 May 2011
TL;DR: New compounds such as triptolide are fast, selective and completely arrest transcription as they trigger rapid degradation of RNAP II and α-amanitin, the characteristics and mechanisms of commonly used inhibitors are reviewed.
Abstract: This review deals first with general questions: how to evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, report on genes that are paradoxically stimulated by transcription inhibition. Next, it reviews the characteristics and mechanisms of commonly used inhibitors. α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB, flavopiridol, are fast and reversible but many genes escape transcription inhibition. New compounds such as triptolide are fast, selective and completely arrest transcription as they trigger rapid degradation of RNAP II.

Journal ArticleDOI
TL;DR: Molecular studies demonstrate that CX-5461 inhibits the initiation stage of rRNA synthesis and induces both senescence and autophagy, but not apoptosis, through a p53-independent process in solid tumor cell lines.
Abstract: Deregulated ribosomal RNA synthesis is associated with uncontrolled cancer cell proliferation. RNA polymerase (Pol) I, the multiprotein complex that synthesizes rRNA, is activated widely in cancer. Thus, selective inhibitors of Pol I may offer a general therapeutic strategy to block cancer cell proliferation. Coupling medicinal chemistry efforts to tandem cell- and molecular-based screening led to the design of CX-5461, a potent small-molecule inhibitor of rRNA synthesis in cancer cells. CX-5461 selectively inhibits Pol I-driven transcription relative to Pol II-driven transcription, DNA replication, and protein translation. Molecular studies demonstrate that CX-5461 inhibits the initiation stage of rRNA synthesis and induces both senescence and autophagy, but not apoptosis, through a p53-independent process in solid tumor cell lines. CX-5461 is orally bioavailable and demonstrates in vivo antitumor activity against human solid tumors in murine xenograft models. Our findings position CX-5461 for investigational clinical trials as a potent, selective, and orally administered agent for cancer treatment.

Journal ArticleDOI
TL;DR: The results show that, on the longest human genes, collisions of the transcription machinery with a replication fork are inevitable, creating R-loops and consequent CFS formation, and functional replication machinery needs to be involved in the resolution of conflicts between transcription and replication machineries to ensure genomic stability.

Journal ArticleDOI
TL;DR: Due to the critical functions of its target proteins in various signaling pathways, miR-21 has become an attractive target for genetic and pharmacological modulation in various disease conditions.
Abstract: The small regulatory RNA microRNA-21 (miR-21) plays a crucial role in a plethora of biological functions and diseases including development, cancer, cardiovascular diseases and inflammation. The gene coding for pri-miR-21 (primary transcript containing miR-21) is located within the intronic region of the TMEM49 gene. Despite pri-miR-21 and TMEM49 are overlapping genes in the same direction of transcription, pri-miR-21 is independently transcribed by its own promoter regions and terminated with its own poly(A) tail. After transcription, primiR- 21 is finally processed into mature miR-21. Expression of miR-21 has been found to be deregulated in almost all types of cancers and therefore was classified as an oncomiR. During recent years, additional roles of miR-21 in cardiovascular and pulmonary diseases, including cardiac and pulmonary fibrosis as well as myocardial infarction have been described. MiR-21 additionally regulates various immunological and developmental processes. Due to the critical functions of its target proteins in various signaling pathways, miR-21 has become an attractive target for genetic and pharmacological modulation in various disease conditions.

Journal ArticleDOI
13 May 2011-Cell
TL;DR: The immediate effects of estrogen signaling on the transcriptome of breast cancer cells using global run-on and sequencing (GRO-seq) are reported and a large number of previously undetected estrogen-regulated intergenic transcripts are identified.

Journal ArticleDOI
TL;DR: DNA methylation of the aromatase promoter may be an essential component of the long-sought-after mechanism connecting environmental temperature and sex ratios in vertebrate species with temperature-dependent sex determination.
Abstract: Sex ratio shifts in response to temperature are common in fish and reptiles. However, the mechanism linking temperature during early development and sex ratios has remained elusive. We show in the European sea bass (sb), a fish in which temperature effects on sex ratios are maximal before the gonads form, that juvenile males have double the DNA methylation levels of females in the promoter of gonadal aromatase (cyp19a), the enzyme that converts androgens into estrogens. Exposure to high temperature increased the cyp19a promoter methylation levels of females, indicating that induced-masculinization involves DNA methylation-mediated control of aromatase gene expression, with an observed inverse relationship between methylation levels and expression. Although different CpGs within the sb cyp19a promoter exhibited different sensitivity to temperature, we show that the increased methylation of the sb cyp19a promoter, which occurs in the gonads but not in the brain, is not a generalized effect of temperature. Importantly, these effects were also observed in sexually undifferentiated fish and were not altered by estrogen treatment. Thus, methylation of the sb cyp19a promoter is the cause of the lower expression of cyp19a in temperature-masculinized fish. In vitro, induced methylation of the sb cyp19a promoter suppressed the ability of SF-1 and Foxl2 to stimulate transcription. Finally, a CpG differentially methylated by temperature and adjacent to a Sox transcription factor binding site is conserved across species. Thus, DNA methylation of the aromatase promoter may be an essential component of the long-sought-after mechanism connecting environmental temperature and sex ratios in vertebrate species with temperature-dependent sex determination.

Journal ArticleDOI
TL;DR: Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated.
Abstract: Summary: A substantial amount of antisense transcription is a hallmark of gene expression in eukaryotes. However, antisense transcription was first demonstrated in bacteria almost 50 years ago. The transcriptomes of bacteria as different as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Synechocystis sp. strain PCC6803, Mycoplasma pneumoniae, Sinorhizobium meliloti, Geobacter sulfurreducens, Vibrio cholerae, Chlamydia trachomatis, Pseudomonas syringae, and Staphylococcus aureus have now been reported to contain antisense RNA (asRNA) transcripts for a high percentage of genes. Bacterial asRNAs share functional similarities with trans-acting regulatory RNAs, but in addition, they use their own distinct mechanisms. Among their confirmed functional roles are transcription termination, codegradation, control of translation, transcriptional interference, and enhanced stability of their respective target transcripts. Here, we review recent publications indicating that asRNAs occur as frequently in simple unicellular bacteria as they do in higher organisms, and we provide a comprehensive overview of the experimentally confirmed characteristics of asRNA actions and intimately linked quantitative aspects. Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated. Thus, the functional impact of asRNAs should be considered when developing new strategies against pathogenic bacteria and when optimizing bacterial strains for biotechnology.

Journal ArticleDOI
TL;DR: It is concluded that through regulation of expression of DNA damage response genes, CycK/Cdk12 protects cells from genomic instability and the essential role of Cyck for organisms in vivo is further supported.
Abstract: Various cyclin-dependent kinase (Cdk) complexes have been implicated in the regulation of transcription. In this study, we identified a 70-kDa Cyclin K (CycK) that binds Cdk12 and Cdk13 to form two different complexes (CycK/Cdk12 or CycK/Cdk13) in human cells. The CycK/Cdk12 complex regulates phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and expression of a small subset of human genes, as revealed in expression microarrays. Depletion of CycK/Cdk12 results in decreased expression of predominantly long genes with high numbers of exons. The most prominent group of down-regulated genes are the DNA damage response genes, including the critical regulators of genomic stability: BRCA1 (breast and ovarian cancer type 1 susceptibility protein 1), ATR (ataxia telangiectasia and Rad3-related), FANCI, and FANCD2. We show that CycK/Cdk12, rather than CycK/Cdk13, is necessary for their expression. Nuclear run-on assays and chromatin immunoprecipitations with RNA polymerase II on the BRCA1 and FANCI genes suggest a transcriptional defect in the absence of CycK/Cdk12. Consistent with these findings, cells without CycK/Cdk12 induce spontaneous DNA damage and are sensitive to a variety of DNA damage agents. We conclude that through regulation of expression of DNA damage response genes, CycK/Cdk12 protects cells from genomic instability. The essential role of CycK for organisms in vivo is further supported by the result that genetic inactivation of CycK in mice causes early embryonic lethality.

Journal ArticleDOI
TL;DR: It is reported that triptolide covalently binds to human XPB, a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II-mediated transcription and likely nucleotide excision repair.
Abstract: Triptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II-mediated transcription and likely nucleotide excision repair. The identification of XPB as the target of triptolide accounts for the majority of the known biological activities of triptolide. These findings also suggest that triptolide can serve as a new molecular probe for studying transcription and, potentially, as a new type of anticancer agent through inhibition of the ATPase activity of XPB.

Journal ArticleDOI
TL;DR: Using differential RNA sequencing, a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp.
Abstract: There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5′ annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.

Journal ArticleDOI
TL;DR: The transcription factor T-bet suppressed development of the TH17 cell lineage by inhibiting transcription of Rorc (which encodes the transcription factor RORγt), reinforcing the idea of master regulators that shape immune responses by simultaneously activating one genetic program while silencing the activity of competing regulators in a common progenitor cell.
Abstract: Overactive responses by interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) are tightly linked to the development of autoimmunity, yet the factors that negatively regulate the differentiation of this lineage remain unknown. Here we report that the transcription factor T-bet suppressed development of the T(H)17 cell lineage by inhibiting transcription of Rorc (which encodes the transcription factor RORγt). T-bet interacted with the transcription factor Runx1, and this interaction blocked Runx1-mediated transactivation of Rorc. T-bet Tyr304 was required for formation of the T-bet-Runx1 complex, for blockade of Runx1 activity and for inhibition of the T(H)17 differentiation program. Our data reinforce the idea of master regulators that shape immune responses by simultaneously activating one genetic program while silencing the activity of competing regulators in a common progenitor cell.

Journal ArticleDOI
07 Jul 2011-Nature
TL;DR: A novel class of 1,658 Xrn1-sensitive unstable transcripts (XUTs) in which 66% are antisense to open reading frames are identified, demonstrating that antisense ncRNA-mediated regulation is a general regulatory pathway for gene expression in S. cerevisiae.
Abstract: Several lines of evidence suggest that non-coding RNAs (ncRNAs) have a significant role in gene regulation in eukaryotes. Genome-wide deep sequencing in the yeast Saccharomyces cerevisiae has now identified antisense ncRNAs that are destabilized by the Xrn1 RNA exonuclease in the 5′ RNA-decay pathway. These Xrn1-sensitive unstable transcripts, or XUTs, seem to function in gene repression and can be antagonized by histone H3K4 trimethylation. Non-coding (nc)RNAs are key players in numerous biological processes such as gene regulation, chromatin domain formation and genome stability1,2. Large ncRNAs interact with histone modifiers3,4,5 and are involved in cancer development6, X-chromosome inactivation7 and autosomal gene imprinting8. However, despite recent evidence showing that pervasive transcription is more widespread than previously thought9, only a few examples mediating gene regulation in eukaryotes have been described10. In Saccharomyces cerevisiae, the bona-fide regulatory ncRNAs are destabilized by the Xrn1 5′–3′ RNA exonuclease11,12 (also known as Kem1), but the genome-wide characterization of the entire regulatory ncRNA family remains elusive. Here, using strand-specific RNA sequencing (RNA-seq), we identify a novel class of 1,658 Xrn1-sensitive unstable transcripts (XUTs) in which 66% are antisense to open reading frames. These transcripts are polyadenylated and RNA polymerase II (RNAPII)-dependent. The majority of XUTs strongly accumulate in lithium-containing media, indicating that they might have a role in adaptive responses to changes in growth conditions. Notably, RNAPII chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) analysis of Xrn1-deficient strains revealed a significant decrease of RNAPII occupancy over 273 genes with antisense XUTs. These genes show an unusual bias for H3K4me3 marks and require the Set1 histone H3 lysine 4 methyl-transferase for silencing. Furthermore, abolishing H3K4me3 triggers the silencing of other genes with antisense XUTs, supporting a model in which H3K4me3 antagonizes antisense ncRNA repressive activity. Our results demonstrate that antisense ncRNA-mediated regulation is a general regulatory pathway for gene expression in S. cerevisiae.

Journal ArticleDOI
TL;DR: A mutually inhibitory feedback loop between auxin and cytokinin that sets distinct boundaries of hormonal output is presented and it is an intriguing possibility that such a mechanism could transform radial patterns and allow continuous vascular connections between other newly emerging organs.