scispace - formally typeset
Search or ask a question
Topic

Transcription (biology)

About: Transcription (biology) is a research topic. Over the lifetime, 56532 publications have been published within this topic receiving 2952782 citations. The topic is also known as: genetic transcription & transcription, genetic.


Papers
More filters
Journal ArticleDOI
TL;DR: A paradigm in which lncRNAs regulate transcription via chromatin modulation is supported, but new functions are steadily emerging, including post-transcriptional regulation, organization of protein complexes, cell-cell signalling and allosteric regulation of proteins.
Abstract: The increased application of transcriptome-wide profiling approaches has led to an explosion in the number of documented long non-coding RNAs (lncRNAs). While these new and enigmatic players in the complex transcriptional milieu are encoded by a significant proportion of the genome, their functions are mostly unknown. Early discoveries support a paradigm in which lncRNAs regulate transcription via chromatin modulation, but new functions are steadily emerging. Given the biochemical versatility of RNA, lncRNAs may be used for various tasks, including post-transcriptional regulation, organization of protein complexes, cell-cell signalling and allosteric regulation of proteins.

1,233 citations

Journal ArticleDOI
TL;DR: It is suggested that DNA damage enhances p53 activity as a transcription factor in part through carboxy-terminal acetylation that, in turn, is directed by amino- terminal phosphorylation.
Abstract: Activation of p53-mediated transcription is a critical cellular response to DNA damage. p53 stability and site-specific DNA-binding activity and, therefore, transcriptional activity, are modulated by post-translational modifications including phosphorylation and acetylation. Here we show that p53 is acetylated in vitro at separate sites by two different histone acetyltransferases (HATs), the coactivators p300 and PCAF. p300 acetylates Lys-382 in the carboxy-terminal region of p53, whereas PCAF acetylates Lys-320 in the nuclear localization signal. Acetylations at either site enhance sequence-specific DNA binding. Using a polyclonal antisera specific for p53 that is phosphorylated or acetylated at specific residues, we show that Lys-382 of human p53 becomes acetylated and Ser-33 and Ser-37 become phosphorylated in vivo after exposing cells to UV light or ionizing radiation. In vitro, amino-terminal p53 peptides phosphorylated at Ser-33 and/or at Ser-37 differentially inhibited p53 acetylation by each HAT. These results suggest that DNA damage enhances p53 activity as a transcription factor in part through carboxy-terminal acetylation that, in turn, is directed by amino-terminal phosphorylation.

1,214 citations

Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Structures of a 10-subunit yeast RNA polymerase II derived from two crystal forms at 2.8 and 3.1 angstrom resolution provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.
Abstract: Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.

1,210 citations

Journal ArticleDOI
TL;DR: Results demonstrate that NEAT1 functions as an essential structural determinant of paraspeckles, providing a precedent for a ncRNA as the foundation of a nuclear domain.

1,205 citations

Journal ArticleDOI
01 Apr 1991-Gene
TL;DR: Using the polymerase chain reaction and standard recombinant DNA techniques, a series of new multipurpose low-copy-number plasmids have been constructed, very useful for analyzing genes encoding proteins which are toxic in Escherichia coli in high copy number.

1,200 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
97% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Transcription factor
82.8K papers, 5.4M citations
96% related
Peptide sequence
84.1K papers, 4.3M citations
95% related
Gene
211.7K papers, 10.3M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20229
20211,730
20201,721
20191,686
20181,571
20171,465