scispace - formally typeset
Search or ask a question
Topic

Transcription (biology)

About: Transcription (biology) is a research topic. Over the lifetime, 56532 publications have been published within this topic receiving 2952782 citations. The topic is also known as: genetic transcription & transcription, genetic.


Papers
More filters
Journal ArticleDOI
TL;DR: An unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states is revealed, and U1 is suggested as a potential target for their modulation.
Abstract: Stimulated cells and cancer cells have widespread shortening of mRNA 3'-untranslated regions (3'UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates' most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells' migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3'UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.

3,432 citations

Journal ArticleDOI
Piero Carninci, Takeya Kasukawa1, Shintaro Katayama, Julian Gough  +194 moreInstitutions (36)
02 Sep 2005-Science
TL;DR: Detailed polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Abstract: This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

3,412 citations

Journal ArticleDOI
TL;DR: A coupled system that permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase is described.
Abstract: The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase.

3,214 citations

Journal ArticleDOI
18 Jul 2013-Cell
TL;DR: The results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence, revealing the potential of CRISpri as a general tool for the precise regulation of gene expression in eukaryotic cells.

3,165 citations

Journal ArticleDOI
04 Oct 1984-Nature
TL;DR: Transcription of the c-fos proto-oncogene is greatly increased within minutes of administering purified growth factors to quiescent 3T3 cells, and this stimulation is the most rapid transcriptional response to peptide growth factors yet described, implying a role for c- fos in cell-cycle control.
Abstract: Transcription of the c-fos proto-oncogene is greatly increased within minutes of administering purified growth factors to quiescent 3T3 cells. This stimulation is the most rapid transcriptional response to peptide growth factors yet described, and implies a role for c-fos in cell-cycle control. Transformation by c-fos may result from a temporal deregulation of this control.

2,762 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
97% related
Regulation of gene expression
85.4K papers, 5.8M citations
96% related
Transcription factor
82.8K papers, 5.4M citations
96% related
Peptide sequence
84.1K papers, 4.3M citations
95% related
Gene
211.7K papers, 10.3M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20229
20211,730
20201,721
20191,686
20181,571
20171,465